We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition com...We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.展开更多
In this paper, we first provide a generalized difference method for the 2-dimensional Navier-Stokes equations by combing the ideas of staggered scheme m and generalized upwind scheme in space, and by backward Euler ti...In this paper, we first provide a generalized difference method for the 2-dimensional Navier-Stokes equations by combing the ideas of staggered scheme m and generalized upwind scheme in space, and by backward Euler time-stepping. Then we apply the abstract framework of to prove its long-time convergence. Finally, a numerical example for solving driven cavity flows is given.展开更多
Conjugate gradient method is one of successful methods for solving the unconstrained optimization problems. In this paper, absorbing the advantages of FR and CD methods, a hybrid conjugate gradient method is proposed....Conjugate gradient method is one of successful methods for solving the unconstrained optimization problems. In this paper, absorbing the advantages of FR and CD methods, a hybrid conjugate gradient method is proposed. Under the general Wolfe linear searches, the proposed method can generate the sufficient descent direction at each iterate,and its global convergence property also can be established. Some preliminary numerical results show that the proposed method is effective and stable for the given test problems.展开更多
In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a h...In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law.The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization.The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ^(2)+N-r),whereτis the time step-size and N is the polynomial degree.To reduce the memory requirements and computational cost,a fast method is developed,which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line.The strict convergence of the numerical scheme with this fast method is proved.We present the results of several numerical experiments to verify the effectiveness of the proposed method.Finally,we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium.The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.展开更多
In this paper we use the spectral method to analyse the generalized Kuramoto-Sivashinsky equations. We prove the existence and uniqueness of global smooth solution of the equations. Finally, we obtain the error estima...In this paper we use the spectral method to analyse the generalized Kuramoto-Sivashinsky equations. We prove the existence and uniqueness of global smooth solution of the equations. Finally, we obtain the error estimation between spectral approximate solution and exact solution on large time.展开更多
The convergence properties of the Fletcher-Reeves method for unconstrained optimization are further studied with the technique of generalized line search. Two conditions are given which guarantee the global convergenc...The convergence properties of the Fletcher-Reeves method for unconstrained optimization are further studied with the technique of generalized line search. Two conditions are given which guarantee the global convergence of the Fletcher-Reeves method using generalized Wolfe line searches or generalized Arjimo line searches, whereas an example is constructed showing that the conditions cannot be relaxed in certain senses.展开更多
In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
We consider a differential variational-hemivariational inequality with constraints,in the framework of reflexive Banach spaces.The existence of a unique mild solution of the inequality,together with its stability,was ...We consider a differential variational-hemivariational inequality with constraints,in the framework of reflexive Banach spaces.The existence of a unique mild solution of the inequality,together with its stability,was proved in[1].Here,we complete these results with existence,uniqueness and convergence results for an associated penalty-type method.To this end,we construct a sequence of perturbed differential variational-hemivariational inequalities governed by perturbed sets of constraints and penalty coefficients.We prove the unique solvability of each perturbed inequality as well as the convergence of its solution to the solution of the original inequality.Then,we consider a mathematical model which describes the equilibrium of a viscoelastic rod in unilateral contact.The weak formulation of the model is in a form of a differential variational-hemivariational inequality in which the unknowns are the displacement field and the history of the deformation.We apply our abstract penalty method in the study of this inequality and provide the corresponding mechanical interpretations.展开更多
In the present paper,we study the restricted inexact Newton-type method for solving the generalized equation 0∈f(x)+F(x),where X and Y are Banach spaces,f:X→Y is a Frechet differentiable function and F:X■Y is a set...In the present paper,we study the restricted inexact Newton-type method for solving the generalized equation 0∈f(x)+F(x),where X and Y are Banach spaces,f:X→Y is a Frechet differentiable function and F:X■Y is a set-valued mapping with closed graph.We establish the convergence criteria of the restricted inexact Newton-type method,which guarantees the existence of any sequence generated by this method and show this generated sequence is convergent linearly and quadratically according to the particular assumptions on the Frechet derivative of f.Indeed,we obtain semilocal and local convergence results of restricted inexact Newton-type method for solving the above generalized equation when the Frechet derivative of f is continuous and Lipschitz continuous as well as f+F is metrically regular.An application of this method to variational inequality is given.In addition,a numerical experiment is given which illustrates the theoretical result.展开更多
The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementa...The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.展开更多
This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtain...This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtained and is solved using the iteration method. A theorem on the convergence of the iterative process is presented and proved using theorems of the infinity norm. Compared with numerical methods based on mesh, the meshless method for the GRLW equation only requires the.scattered nodes instead of meshing the domain of the problem. Some examples, such as the propagation of single soliton and the interaction of two solitary waves, are given to show the effectiveness of the meshless method.展开更多
The Domain Decomposition Method(DDM) is a powerful approach to solving maily types of PDE's. DDM is especially suitable for massively Parallel computers. In the past, most research on DDM has focused on the domain...The Domain Decomposition Method(DDM) is a powerful approach to solving maily types of PDE's. DDM is especially suitable for massively Parallel computers. In the past, most research on DDM has focused on the domain splitting technique. In this paper. we focus our attention on use of a combination of techniques to solve each subproblem. The central question with DDM is that of how to doal with the pseodoboundary conditions. Here, we introduce a set of operators which act on the pseudo-boundaries in the solution process, referring to this new. procedure as the 'Generalized Domain Decomposition A.Jlethod(GDDM).' We have already obtained convergence factors for GDDM with certain classes of PDE's. These ctonvergence factors show that we can derive exact solutions of the whole problem for certain types of PDE's, and can get superior speed of convergence for other types.展开更多
In this paper,we accomplish the unified convergence analysis of a second-order method of multipliers(i.e.,a second-order augmented Lagrangian method)for solving the conventional nonlinear conic optimization problems.S...In this paper,we accomplish the unified convergence analysis of a second-order method of multipliers(i.e.,a second-order augmented Lagrangian method)for solving the conventional nonlinear conic optimization problems.Specifically,the algorithm that we investigate incorporates a specially designed nonsmooth(generalized)Newton step to furnish a second-order update rule for the multipliers.We first show in a unified fashion that under a few abstract assumptions,the proposed method is locally convergent and possesses a(nonasymptotic)superlinear convergence rate,even though the penalty parameter is fixed and/or the strict complementarity fails.Subsequently,we demonstrate that for the three typical scenarios,i.e.,the classic nonlinear programming,the nonlinear second-order cone programming and the nonlinear semidefinite programming,these abstract assumptions are nothing but exactly the implications of the iconic sufficient conditions that are assumed for establishing the Q-linear convergence rates of the method of multipliers without assuming the strict complementarity.展开更多
In this paper, for general linear methods applied to strictly dissipative initial value problem in Hilbert spaces, we prove that algebraic stability implies B-convergence, which extends and improves the existing resul...In this paper, for general linear methods applied to strictly dissipative initial value problem in Hilbert spaces, we prove that algebraic stability implies B-convergence, which extends and improves the existing results on Runge-Kutta methods. Specializing our results for the case of multi-step Runge-Kutta methods, a series of B-convergence results are obtained.展开更多
A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a G...A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11190024 and 11474331)
文摘We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.
基金The project supported by Laboratory of Computational Physics,Institute of Applied Physics & Computational Mathematics,T.O.Box 80 0 9,Beijing 1 0 0 0 88
文摘In this paper, we first provide a generalized difference method for the 2-dimensional Navier-Stokes equations by combing the ideas of staggered scheme m and generalized upwind scheme in space, and by backward Euler time-stepping. Then we apply the abstract framework of to prove its long-time convergence. Finally, a numerical example for solving driven cavity flows is given.
文摘Conjugate gradient method is one of successful methods for solving the unconstrained optimization problems. In this paper, absorbing the advantages of FR and CD methods, a hybrid conjugate gradient method is proposed. Under the general Wolfe linear searches, the proposed method can generate the sufficient descent direction at each iterate,and its global convergence property also can be established. Some preliminary numerical results show that the proposed method is effective and stable for the given test problems.
基金supported by the Project of the National Key R&D Program(Grant No.2021YFA1000202)National Natural Science Foundation of China(Grant Nos.12120101001,12001326 and 12171283)+2 种基金Natural Science Foundation of Shandong Province(Grant Nos.ZR2021ZD03,ZR2020QA032 and ZR2019ZD42)China Postdoctoral Science Foundation(Grant Nos.BX20190191 and 2020M672038)the Startup Fund from Shandong University(Grant No.11140082063130)。
文摘In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law.The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization.The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ^(2)+N-r),whereτis the time step-size and N is the polynomial degree.To reduce the memory requirements and computational cost,a fast method is developed,which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line.The strict convergence of the numerical scheme with this fast method is proved.We present the results of several numerical experiments to verify the effectiveness of the proposed method.Finally,we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium.The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.
文摘In this paper we use the spectral method to analyse the generalized Kuramoto-Sivashinsky equations. We prove the existence and uniqueness of global smooth solution of the equations. Finally, we obtain the error estimation between spectral approximate solution and exact solution on large time.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19801033).
文摘The convergence properties of the Fletcher-Reeves method for unconstrained optimization are further studied with the technique of generalized line search. Two conditions are given which guarantee the global convergence of the Fletcher-Reeves method using generalized Wolfe line searches or generalized Arjimo line searches, whereas an example is constructed showing that the conditions cannot be relaxed in certain senses.
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.
基金supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement(823731CONMECH)supported by National Natural Science Foundation of China(11671101),supported by National Natural Science Foundation of China(11961074)+2 种基金Guangxi Natural Science Foundation(2021GXNSFAA075022)Project of Guangxi Education Department(2020KY16017)Yulin normal university of scientific research fund for high-level talents(G2019ZK39,G2021ZK06)。
文摘We consider a differential variational-hemivariational inequality with constraints,in the framework of reflexive Banach spaces.The existence of a unique mild solution of the inequality,together with its stability,was proved in[1].Here,we complete these results with existence,uniqueness and convergence results for an associated penalty-type method.To this end,we construct a sequence of perturbed differential variational-hemivariational inequalities governed by perturbed sets of constraints and penalty coefficients.We prove the unique solvability of each perturbed inequality as well as the convergence of its solution to the solution of the original inequality.Then,we consider a mathematical model which describes the equilibrium of a viscoelastic rod in unilateral contact.The weak formulation of the model is in a form of a differential variational-hemivariational inequality in which the unknowns are the displacement field and the history of the deformation.We apply our abstract penalty method in the study of this inequality and provide the corresponding mechanical interpretations.
基金supported by CAS-President International Fellowship Initiative(PIFI)from the Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing,China.
文摘In the present paper,we study the restricted inexact Newton-type method for solving the generalized equation 0∈f(x)+F(x),where X and Y are Banach spaces,f:X→Y is a Frechet differentiable function and F:X■Y is a set-valued mapping with closed graph.We establish the convergence criteria of the restricted inexact Newton-type method,which guarantees the existence of any sequence generated by this method and show this generated sequence is convergent linearly and quadratically according to the particular assumptions on the Frechet derivative of f.Indeed,we obtain semilocal and local convergence results of restricted inexact Newton-type method for solving the above generalized equation when the Frechet derivative of f is continuous and Lipschitz continuous as well as f+F is metrically regular.An application of this method to variational inequality is given.In addition,a numerical experiment is given which illustrates the theoretical result.
文摘The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.
基金supported by the National Natural Science Foundation of China (Grant No. 10871124)the Innovation Program of the Shanghai Municipal Education Commission,China (Grant No. 09ZZ99)
文摘This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtained and is solved using the iteration method. A theorem on the convergence of the iterative process is presented and proved using theorems of the infinity norm. Compared with numerical methods based on mesh, the meshless method for the GRLW equation only requires the.scattered nodes instead of meshing the domain of the problem. Some examples, such as the propagation of single soliton and the interaction of two solitary waves, are given to show the effectiveness of the meshless method.
文摘The Domain Decomposition Method(DDM) is a powerful approach to solving maily types of PDE's. DDM is especially suitable for massively Parallel computers. In the past, most research on DDM has focused on the domain splitting technique. In this paper. we focus our attention on use of a combination of techniques to solve each subproblem. The central question with DDM is that of how to doal with the pseodoboundary conditions. Here, we introduce a set of operators which act on the pseudo-boundaries in the solution process, referring to this new. procedure as the 'Generalized Domain Decomposition A.Jlethod(GDDM).' We have already obtained convergence factors for GDDM with certain classes of PDE's. These ctonvergence factors show that we can derive exact solutions of the whole problem for certain types of PDE's, and can get superior speed of convergence for other types.
基金supported by National Natural Science Foundation of China (Grant No. 11801158)the Hunan Provincial Natural Science Foundation of China (Grant No. 2019JJ50040)+2 种基金the Fundamental Research Funds for the Central Universities in Chinasupported by National Natural Science Foundation of China (Grant No. 11871002)the General Program of Science and Technology of Beijing Municipal Education Commission (Grant No. KM201810005004)
文摘In this paper,we accomplish the unified convergence analysis of a second-order method of multipliers(i.e.,a second-order augmented Lagrangian method)for solving the conventional nonlinear conic optimization problems.Specifically,the algorithm that we investigate incorporates a specially designed nonsmooth(generalized)Newton step to furnish a second-order update rule for the multipliers.We first show in a unified fashion that under a few abstract assumptions,the proposed method is locally convergent and possesses a(nonasymptotic)superlinear convergence rate,even though the penalty parameter is fixed and/or the strict complementarity fails.Subsequently,we demonstrate that for the three typical scenarios,i.e.,the classic nonlinear programming,the nonlinear second-order cone programming and the nonlinear semidefinite programming,these abstract assumptions are nothing but exactly the implications of the iconic sufficient conditions that are assumed for establishing the Q-linear convergence rates of the method of multipliers without assuming the strict complementarity.
基金The project supported by the National Natural Science Foundation of China
文摘In this paper, for general linear methods applied to strictly dissipative initial value problem in Hilbert spaces, we prove that algebraic stability implies B-convergence, which extends and improves the existing results on Runge-Kutta methods. Specializing our results for the case of multi-step Runge-Kutta methods, a series of B-convergence results are obtained.
基金supported by the National Natural Science Foundation of China(Nos.11502103 and11421062)the Open Fund of State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ15115)
文摘A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.