In the research of bistatic tomography imaging of translating object, we get a class of generalized Radon transformation. In this paper, first we prove the existence and uniguenness of its solution in theory and poin...In the research of bistatic tomography imaging of translating object, we get a class of generalized Radon transformation. In this paper, first we prove the existence and uniguenness of its solution in theory and point out this problem is ill-posed with an especial example.Secondly by means of multiplicative interpolation functions to approximate models, we constracted regularizing functional. Finally we simplify calculation by Fourier transformation,get regularizing solutions that converge to accurate solution.展开更多
Let X=Rn +×R denote the underlying manifold of polyradial functions on the Heisenberg group H n. We construct a generalized translation on X=Rn +×R, and establish the Plancherel formula on L2(X,dμ). Usin...Let X=Rn +×R denote the underlying manifold of polyradial functions on the Heisenberg group H n. We construct a generalized translation on X=Rn +×R, and establish the Plancherel formula on L2(X,dμ). Using the Gelfand transform we give the condition of generalized wavelets on L2(X,dμ). Moreover, we show the reconstruction formulas for wavelet packet trnasforms and an inversion formula of the Radon transform on X.展开更多
文摘In the research of bistatic tomography imaging of translating object, we get a class of generalized Radon transformation. In this paper, first we prove the existence and uniguenness of its solution in theory and point out this problem is ill-posed with an especial example.Secondly by means of multiplicative interpolation functions to approximate models, we constracted regularizing functional. Finally we simplify calculation by Fourier transformation,get regularizing solutions that converge to accurate solution.
基金Supported by the Foundation of the National Natural Science of China( No.1 0 0 71 0 39) and the Foundation of Edu-cation Commission of Jiangsu Province
文摘Let X=Rn +×R denote the underlying manifold of polyradial functions on the Heisenberg group H n. We construct a generalized translation on X=Rn +×R, and establish the Plancherel formula on L2(X,dμ). Using the Gelfand transform we give the condition of generalized wavelets on L2(X,dμ). Moreover, we show the reconstruction formulas for wavelet packet trnasforms and an inversion formula of the Radon transform on X.