Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To ...Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.展开更多
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si...Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance.展开更多
Generative Models have been shown to be extremely useful in learning features from unlabeled data. In particular, variational autoencoders are capable of modeling highly complex natural distributions such as images, w...Generative Models have been shown to be extremely useful in learning features from unlabeled data. In particular, variational autoencoders are capable of modeling highly complex natural distributions such as images, while extracting natural and human-understandable features without labels. In this paper we combine two highly useful classes of models, variational ladder autoencoders, and MMD variational autoencoders, to model face images. In particular, we show that we can disentangle highly meaningful and interpretable features. Furthermore, we are able to perform arithmetic operations on faces and modify faces to add or remove high level features.展开更多
The era of the Internet of things(IoT)has marked a continued exploration of applications and services that can make people’s lives more convenient than ever before.However,the exploration of IoT services also means t...The era of the Internet of things(IoT)has marked a continued exploration of applications and services that can make people’s lives more convenient than ever before.However,the exploration of IoT services also means that people face unprecedented difficulties in spontaneously selecting the most appropriate services.Thus,there is a paramount need for a recommendation system that can help improve the experience of the users of IoT services to ensure the best quality of service.Most of the existing techniques—including collaborative filtering(CF),which is most widely adopted when building recommendation systems—suffer from rating sparsity and cold-start problems,preventing them from providing high quality recommendations.Inspired by the great success of deep learning in a wide range of fields,this work introduces a deep-learning-enabled autoencoder architecture to overcome the setbacks of CF recommendations.The proposed deep learning model is designed as a hybrid architecture with three key networks,namely autoencoder(AE),multilayered perceptron(MLP),and generalized matrix factorization(GMF).The model employs two AE networks to learn deep latent feature representations of users and items respectively and in parallel.Next,MLP and GMF networks are employed to model the linear and non-linear user-item interactions respectively with the extracted latent user and item features.Finally,the rating prediction is performed based on the idea of ensemble learning by fusing the output of the GMF and MLP networks.We conducted extensive experiments on two benchmark datasets,MoiveLens100K and MovieLens1M,using four standard evaluation metrics.Ablation experiments were conducted to confirm the validity of the proposed model and the contribution of each of its components in achieving better recommendation performance.Comparative analyses were also carried out to demonstrate the potential of the proposed model in gaining better accuracy than the existing CF methods with resistance to rating sparsity and cold-start problems.展开更多
Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological struct...Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological structure of graph data,but ignore the semantic information of graph data,which results in the unsatisfied performance in practical applications.To overcome the problem,this paper proposes a novel deep convolutional adversarial graph autoencoder(GAE)model.To embed the semantic information between nodes in the graph data,the random walk strategy is first used to construct the positive pointwise mutual information(PPMI)matrix,then,graph convolutional net-work(GCN)is employed to encode the PPMI matrix and node content into the latent representation.Finally,the learned latent representation is used to reconstruct the topological structure of the graph data by decoder.Furthermore,the deep convolutional adversarial training algorithm is introduced to make the learned latent representation conform to the prior distribution better.The state-of-the-art experimental results on the graph data validate the effectiveness of the proposed model in the link prediction,node clustering and graph visualization tasks for three standard datasets,Cora,Citeseer and Pubmed.展开更多
Due to the increasing cyber-attacks,various Intrusion Detection Systems(IDSs)have been proposed to identify network anomalies.Most existing machine learning-based IDSs learn patterns from the features extracted from n...Due to the increasing cyber-attacks,various Intrusion Detection Systems(IDSs)have been proposed to identify network anomalies.Most existing machine learning-based IDSs learn patterns from the features extracted from network traffic flows,and the deep learning-based approaches can learn data distribution features from the raw data to differentiate normal and anomalous network flows.Although having been used in the real world widely,the above methods are vulnerable to some types of attacks.In this paper,we propose a novel attack framework,Anti-Intrusion Detection AutoEncoder(AIDAE),to generate features to disable the IDS.In the proposed framework,an encoder transforms features into a latent space,and multiple decoders reconstruct the continuous and discrete features,respectively.Additionally,a generative adversarial network is used to learn the flexible prior distribution of the latent space.The correlation between continuous and discrete features can be kept by using the proposed training scheme.Experiments conducted on NSL-KDD,UNSW-NB15,and CICIDS2017 datasets show that the generated features indeed degrade the detection performance of existing IDSs dramatically.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20186 and 62372063).
文摘Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods.
文摘Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance.
文摘Generative Models have been shown to be extremely useful in learning features from unlabeled data. In particular, variational autoencoders are capable of modeling highly complex natural distributions such as images, while extracting natural and human-understandable features without labels. In this paper we combine two highly useful classes of models, variational ladder autoencoders, and MMD variational autoencoders, to model face images. In particular, we show that we can disentangle highly meaningful and interpretable features. Furthermore, we are able to perform arithmetic operations on faces and modify faces to add or remove high level features.
基金supported by the deanship of Scientific Research at Prince Sattam Bin Abdulaziz University,Alkharj,Saudi Arabia through Research Proposal No.2020/01/17215。
文摘The era of the Internet of things(IoT)has marked a continued exploration of applications and services that can make people’s lives more convenient than ever before.However,the exploration of IoT services also means that people face unprecedented difficulties in spontaneously selecting the most appropriate services.Thus,there is a paramount need for a recommendation system that can help improve the experience of the users of IoT services to ensure the best quality of service.Most of the existing techniques—including collaborative filtering(CF),which is most widely adopted when building recommendation systems—suffer from rating sparsity and cold-start problems,preventing them from providing high quality recommendations.Inspired by the great success of deep learning in a wide range of fields,this work introduces a deep-learning-enabled autoencoder architecture to overcome the setbacks of CF recommendations.The proposed deep learning model is designed as a hybrid architecture with three key networks,namely autoencoder(AE),multilayered perceptron(MLP),and generalized matrix factorization(GMF).The model employs two AE networks to learn deep latent feature representations of users and items respectively and in parallel.Next,MLP and GMF networks are employed to model the linear and non-linear user-item interactions respectively with the extracted latent user and item features.Finally,the rating prediction is performed based on the idea of ensemble learning by fusing the output of the GMF and MLP networks.We conducted extensive experiments on two benchmark datasets,MoiveLens100K and MovieLens1M,using four standard evaluation metrics.Ablation experiments were conducted to confirm the validity of the proposed model and the contribution of each of its components in achieving better recommendation performance.Comparative analyses were also carried out to demonstrate the potential of the proposed model in gaining better accuracy than the existing CF methods with resistance to rating sparsity and cold-start problems.
基金Supported by the Strategy Priority Research Program of Chinese Academy of Sciences(No.XDC02070600).
文摘Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological structure of graph data,but ignore the semantic information of graph data,which results in the unsatisfied performance in practical applications.To overcome the problem,this paper proposes a novel deep convolutional adversarial graph autoencoder(GAE)model.To embed the semantic information between nodes in the graph data,the random walk strategy is first used to construct the positive pointwise mutual information(PPMI)matrix,then,graph convolutional net-work(GCN)is employed to encode the PPMI matrix and node content into the latent representation.Finally,the learned latent representation is used to reconstruct the topological structure of the graph data by decoder.Furthermore,the deep convolutional adversarial training algorithm is introduced to make the learned latent representation conform to the prior distribution better.The state-of-the-art experimental results on the graph data validate the effectiveness of the proposed model in the link prediction,node clustering and graph visualization tasks for three standard datasets,Cora,Citeseer and Pubmed.
文摘Due to the increasing cyber-attacks,various Intrusion Detection Systems(IDSs)have been proposed to identify network anomalies.Most existing machine learning-based IDSs learn patterns from the features extracted from network traffic flows,and the deep learning-based approaches can learn data distribution features from the raw data to differentiate normal and anomalous network flows.Although having been used in the real world widely,the above methods are vulnerable to some types of attacks.In this paper,we propose a novel attack framework,Anti-Intrusion Detection AutoEncoder(AIDAE),to generate features to disable the IDS.In the proposed framework,an encoder transforms features into a latent space,and multiple decoders reconstruct the continuous and discrete features,respectively.Additionally,a generative adversarial network is used to learn the flexible prior distribution of the latent space.The correlation between continuous and discrete features can be kept by using the proposed training scheme.Experiments conducted on NSL-KDD,UNSW-NB15,and CICIDS2017 datasets show that the generated features indeed degrade the detection performance of existing IDSs dramatically.