In this paper is investigated the generalized projective synchronization of a class of chaotic (or hyperchaotic) systems, in which certain parameters can be separated from uncertain parameters. Based on the adaptive...In this paper is investigated the generalized projective synchronization of a class of chaotic (or hyperchaotic) systems, in which certain parameters can be separated from uncertain parameters. Based on the adaptive technique, the globally generalized projective synchronization of two identical chaotic (hyperchaotic) systems is achieved by designing a novel nonlinear controller. Furthermore, the parameter identification is realized simultaneously. A sufficient condition for the globally projective synchronization is obtained. Finally, by taking the hyperchaotic L system as example, some numerical simulations are provided to demonstrate the effectiveness and feasibility of the proposed technique.展开更多
Based on the Chen chaotic system, a new four-dimensional hyperchaotic Chen system is constructed, and the basic dynamic behaviours of the system were studied, and the generalized synchronization has been observed in t...Based on the Chen chaotic system, a new four-dimensional hyperchaotic Chen system is constructed, and the basic dynamic behaviours of the system were studied, and the generalized synchronization has been observed in the coupled four-dimensional hyperchaotic Chen system with unknown parameters. The Routh Hurwitz theorem is used to derive the conditions of stability of this system. Furthermore based on Lyapunov stability theory, the control laws and adaptive laws of parameters are obtained to make generalized synchronization of the coupled new four-dimensional hyperchaotic Chen systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
In this paper, a bidirectional partial generalized (lag, complete, and anticipated) synchronization of a class of continuous-time systems is defined. Then based on the active control idea, a new systematic and concr...In this paper, a bidirectional partial generalized (lag, complete, and anticipated) synchronization of a class of continuous-time systems is defined. Then based on the active control idea, a new systematic and concrete scheme is developed to achieve bidirectional partial generalized (lag, complete, and anticipated) synchronization between two chaotic systems or between chaotic and hyperchaotic systems. With the help of symbolic-numerical computation, we choose the modified Chua system, Lorenz system, and the hyperchaotic Tamasevicius Namajunas-Cenys system to illustrate the proposed scheme. Numerical simulations are used to verify the effectiveness of the proposed scheme. It is interesting that partial chaos synchronization not only can take place between two chaotic systems, but also can take place between chaotic and hyperchaotic systems. The proposed scheme can also be extended to research bidirectional partial generalized (lag, complete, and anticipated) synchronization between other dynamical systems.展开更多
A more general form of projective synchronization, so called linear generalized synchronization (LGS) is proposed, which includes the generalized projective synchronization (GPS) and the hybrid projective synchron...A more general form of projective synchronization, so called linear generalized synchronization (LGS) is proposed, which includes the generalized projective synchronization (GPS) and the hybrid projective synchronization (HPS) as its special cases, Based on the adaptive technique and Lyapunov stability theory, a general method for achieving the LGS between two chaotic or hyperehaotic systems with uncertain parameters in any scaling matrix is presented. Some numerical simulations are provided to show the effectiveness and feasibility of the proposed synchronization method.展开更多
In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchroniz...In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.展开更多
Chaotic communication is a rather new and active field of research. Althoughit is expected to have promising advantages, some investigators provide evidences that chaoticcommunication is not safety. This letter provid...Chaotic communication is a rather new and active field of research. Althoughit is expected to have promising advantages, some investigators provide evidences that chaoticcommunication is not safety. This letter provides a new chaotic secure communication scheme based ona generalized synchronization theory of coupled system. The secret message hidden in the chaoticsource signal generated via the scheme is very difficult to be unmasked by so-called nonlineardynamic forecasting technique. One example for Internet communications was presented to illustratethe security of our scheme.展开更多
Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperc...Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperchaotic Liu system. Through adjusting the frequency of the control signal, the chaotic property of the system can be controlled to show some different dynamic behaviors such as periodic, quasi-periodic, chaotic and hyperchaotic dynamic behaviours. By numerical simulations, the Lyapunov exponent spectrums, bifurcation diagrams and phase diagrams of the two new systems are studied, respectively. Furthermore, the synchronizing circuits of the nonautonomous hyperchaotic Liu system are designed via the synchronization control method of single variable coupling feedback. Finally, the hardware circuits are implemented, and the corresponding waves of chaos are observed by an oscillograph.展开更多
This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a...This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a structural condition on the considered class of response systems is satisfied.The method presents some useful features:it enables exact GS to be achieved in finite time(i.e.,dead-beat synchronization);it is rigorous,systematic,and straightforward in checking GS;it can be applied to a wide class of chaotic maps.Some examples of GS,including the Grassi-Miller map and a recently introduced minimal 2-D quadratic map,are illustrated.展开更多
A universal adaptive generalized functional synchronization approach to any two different or identical chaotic systems with unknown parameters is proposed, based on a unified mathematical expression of a large class o...A universal adaptive generalized functional synchronization approach to any two different or identical chaotic systems with unknown parameters is proposed, based on a unified mathematical expression of a large class of chaotic system. Self-adaptive parameter law and control law are given in the form of a theorem. The synchronization between the three-dimensional R6ssler chaotic system and the four-dimensional Chen's hyper-chaotic system is studied as an example for illustration. The computer simulation results demonstrate the feasibility of the method proposed.展开更多
This paper presents a general method of the generalized projective synchronization and the parameter identification between two different chaotic systems with unknown parameters. This approach is based on Lyapunov sta...This paper presents a general method of the generalized projective synchronization and the parameter identification between two different chaotic systems with unknown parameters. This approach is based on Lyapunov stability theory, and employs a combination of feedback control and adaptive control. With this method one can achieve the generalized projective synchronization and realize the parameter identifications between almost all chaotic (hyperchaotic) systems with unknown parameters. Numerical simulations results are presented to demonstrate the effectiveness of the method.展开更多
Based on Lyapunov theory, the adaptive generalized synchronization between Chen system and a multi-scroll chaotic system is investigated. According to the form of target function a proper adaptive controller is design...Based on Lyapunov theory, the adaptive generalized synchronization between Chen system and a multi-scroll chaotic system is investigated. According to the form of target function a proper adaptive controller is designed, by which the controlled Chen system can be synchronized with a multi-scroll chaotic system including unknown parameters. The Lyapunov direct method is exploited to prove that the synchronization error and parameter identification error both converge to zero. Numerical simulation results verify the feasibility of the proposed method further.展开更多
In this paper,using scalar feedback controller and stability theory of fractional-order systems,a gener-alized synchronization method for different fractional-order chaotic systems is established.Simulation results sh...In this paper,using scalar feedback controller and stability theory of fractional-order systems,a gener-alized synchronization method for different fractional-order chaotic systems is established.Simulation results show theeffectiveness of the theoretical results.展开更多
This paper is concerned with the existence of adaptive generalized synchronization(GS) of two chaotic systems.An adaptive control is designed based on a Lyapunov approach.By using modified system approach,some suffici...This paper is concerned with the existence of adaptive generalized synchronization(GS) of two chaotic systems.An adaptive control is designed based on a Lyapunov approach.By using modified system approach,some sufficient conditions for the existence of first two types of adaptive GS inertial manifolds are established.Finally,some numerical simulations are provided to illustrate the theoretical results.展开更多
In this paper, a very simple generalized synchronization method between different chaotic systems is presented. Only a scalar controller is used in this method. The method of obtaining the scalar controller from chaot...In this paper, a very simple generalized synchronization method between different chaotic systems is presented. Only a scalar controller is used in this method. The method of obtaining the scalar controller from chaotic systems is established. The sufficient and necessary condition of generalized synchronization is obtained from a rigorous theory, and the sufficient and necessary condition of generalized synchronization is irrelative to chaotic system itself. Theoretical analyses and simulation results show that the method established in this paper is effective.展开更多
Based on the Chen chaotic system, this paper constructs a new three-dimensional chaotic system with higher order nonlinear term and studies the basic dynamic behaviours of the system. The modified generalized projecti...Based on the Chen chaotic system, this paper constructs a new three-dimensional chaotic system with higher order nonlinear term and studies the basic dynamic behaviours of the system. The modified generalized projective synchronization has been observed in the coupled new three-dimensional chaotic system with unknown parameters. Furthermore, based on Lyapunov stability theory, it obtains the control laws and adaptive laws of parameters to make modified generalized projective synchronization of the coupled new three-dimensional chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability ...A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state wriables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.展开更多
The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to th...The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.展开更多
Adaptive H∞ synchronization of chaotic systems via linear and nonlinear feedback control is investigated. The chaotic systems are redesigned by using the generalized Hamiltonian systems and observer approach. Based o...Adaptive H∞ synchronization of chaotic systems via linear and nonlinear feedback control is investigated. The chaotic systems are redesigned by using the generalized Hamiltonian systems and observer approach. Based on Lya-punov's stability theory, linear and nonlinear feedback control of adaptive H∞ synchronization is established in order to not only guarantee stable synchronization of both master and slave systems but also reduce the effect of external disturbance on an Hoe-norm constraint. Adaptive H∞ synchronization of chaotic systems via three kinds of control is investigated with applications to Lorenz and Chen systems. Numerical simulations are also given to identify the effectiveness of the theoretical analysis.展开更多
A complex network consisting of chaotic systems is considered and the existence of the HSlder continuous gen- eralized synchronization in the network is studied. First, we divide nodes of the network into two parts ac...A complex network consisting of chaotic systems is considered and the existence of the HSlder continuous gen- eralized synchronization in the network is studied. First, we divide nodes of the network into two parts according to their dynamical behaviour. Then, based on the Schauder fixed point theorem, sufficient conditions for the existence of the generalized synchronization between them are derived. Moreover, the results are theoretically proved. Numerical simulations validate the theory.展开更多
Nonlinear dynamics of the time-delayed Mackey-Glass systems is explored. Coexistent multiple chaotic attractors are found. Attractors with double-scroll structures can be well classified in terms of different return t...Nonlinear dynamics of the time-delayed Mackey-Glass systems is explored. Coexistent multiple chaotic attractors are found. Attractors with double-scroll structures can be well classified in terms of different return times within one period of the delay time by constructing the Poincare section. Synchronizations of the drive-response Mackey-Glass oscillators are investigated. The critical coupling strength for the emergence of generalized synchronization against the delay time exhibits the interesting resonant behaviour. We reveal that stronger resonance effect may be observed when different attractors are applied to the drivers, i.e., more resonance peaks can be found.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60574045) and partly by Foundation of Guangxi Department of Education, China (Grant No (2006)26-118).
文摘In this paper is investigated the generalized projective synchronization of a class of chaotic (or hyperchaotic) systems, in which certain parameters can be separated from uncertain parameters. Based on the adaptive technique, the globally generalized projective synchronization of two identical chaotic (hyperchaotic) systems is achieved by designing a novel nonlinear controller. Furthermore, the parameter identification is realized simultaneously. A sufficient condition for the globally projective synchronization is obtained. Finally, by taking the hyperchaotic L system as example, some numerical simulations are provided to demonstrate the effectiveness and feasibility of the proposed technique.
文摘Based on the Chen chaotic system, a new four-dimensional hyperchaotic Chen system is constructed, and the basic dynamic behaviours of the system were studied, and the generalized synchronization has been observed in the coupled four-dimensional hyperchaotic Chen system with unknown parameters. The Routh Hurwitz theorem is used to derive the conditions of stability of this system. Furthermore based on Lyapunov stability theory, the control laws and adaptive laws of parameters are obtained to make generalized synchronization of the coupled new four-dimensional hyperchaotic Chen systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
基金The author thanks the referees for their valuable suggestions and is very grateful to Dr. Yan Zhen-Ya for his enthusiastic guidance and help.
文摘In this paper, a bidirectional partial generalized (lag, complete, and anticipated) synchronization of a class of continuous-time systems is defined. Then based on the active control idea, a new systematic and concrete scheme is developed to achieve bidirectional partial generalized (lag, complete, and anticipated) synchronization between two chaotic systems or between chaotic and hyperchaotic systems. With the help of symbolic-numerical computation, we choose the modified Chua system, Lorenz system, and the hyperchaotic Tamasevicius Namajunas-Cenys system to illustrate the proposed scheme. Numerical simulations are used to verify the effectiveness of the proposed scheme. It is interesting that partial chaos synchronization not only can take place between two chaotic systems, but also can take place between chaotic and hyperchaotic systems. The proposed scheme can also be extended to research bidirectional partial generalized (lag, complete, and anticipated) synchronization between other dynamical systems.
基金the National Natural Science Foundation of China (60574045 10661006).
文摘A more general form of projective synchronization, so called linear generalized synchronization (LGS) is proposed, which includes the generalized projective synchronization (GPS) and the hybrid projective synchronization (HPS) as its special cases, Based on the adaptive technique and Lyapunov stability theory, a general method for achieving the LGS between two chaotic or hyperehaotic systems with uncertain parameters in any scaling matrix is presented. Some numerical simulations are provided to show the effectiveness and feasibility of the proposed synchronization method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50830202 and 51073179)the Natural Science Foundation of Chongqing,China (Grant No. CSTC 2010BB2238)+2 种基金the Doctoral Program of Higher Education Foundation of Institutions of China (Grant Nos. 20090191110011 and 20100191120025)the Natural Science Foundation for Postdoctoral Scientists of China (Grant Nos. 20100470813 and 20100480043)the Fundamental Research Funds for the Central Universities(Grant Nos. CDJZR11 12 00 03 and CDJZR11 12 88 01)
文摘In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.
基金This project is jointly supported by the National Natural Science Foundation of China (No.60074034, 70271068), the Research Fund for the Doctoral Program of Higher Education (N0.200200080004) and the Foundation for University Key Teacher by the Ministry
文摘Chaotic communication is a rather new and active field of research. Althoughit is expected to have promising advantages, some investigators provide evidences that chaoticcommunication is not safety. This letter provides a new chaotic secure communication scheme based ona generalized synchronization theory of coupled system. The secret message hidden in the chaoticsource signal generated via the scheme is very difficult to be unmasked by so-called nonlineardynamic forecasting technique. One example for Internet communications was presented to illustratethe security of our scheme.
基金Project supported by the National Natural Science Foundation of China (Grant No 60572089)the Natural Science Foundation of Chongqing (Grant No CSTC,2008BB2087)
文摘Based on the three-dimensional Liu chaotic system, this paper appends a feedback variable to construct a novel hyperchaotic Liu system. Then, a control signal is further added to construct a novel nonautonomous hyperchaotic Liu system. Through adjusting the frequency of the control signal, the chaotic property of the system can be controlled to show some different dynamic behaviors such as periodic, quasi-periodic, chaotic and hyperchaotic dynamic behaviours. By numerical simulations, the Lyapunov exponent spectrums, bifurcation diagrams and phase diagrams of the two new systems are studied, respectively. Furthermore, the synchronizing circuits of the nonautonomous hyperchaotic Liu system are designed via the synchronization control method of single variable coupling feedback. Finally, the hardware circuits are implemented, and the corresponding waves of chaos are observed by an oscillograph.
文摘This paper presents a new scheme to achieve generalized synchronization(GS) between different discrete-time chaotic(hyperchaotic) systems.The approach is based on a theorem,which assures that GS is achieved when a structural condition on the considered class of response systems is satisfied.The method presents some useful features:it enables exact GS to be achieved in finite time(i.e.,dead-beat synchronization);it is rigorous,systematic,and straightforward in checking GS;it can be applied to a wide class of chaotic maps.Some examples of GS,including the Grassi-Miller map and a recently introduced minimal 2-D quadratic map,are illustrated.
基金Project supported by the National Natural Science Foundation of China (Grant No 50677021)partially by the Key Project Foundation of North China Electric Power University (Grant No 20041306)by the Scientific Research Foundation for the Returned Overseas Chinese Scholar, NCEPU (Grant No 200814002)
文摘A universal adaptive generalized functional synchronization approach to any two different or identical chaotic systems with unknown parameters is proposed, based on a unified mathematical expression of a large class of chaotic system. Self-adaptive parameter law and control law are given in the form of a theorem. The synchronization between the three-dimensional R6ssler chaotic system and the four-dimensional Chen's hyper-chaotic system is studied as an example for illustration. The computer simulation results demonstrate the feasibility of the method proposed.
基金Project supported by the Natural Science Foundation of Hebei Province, China (Grant No A2006000128)
文摘This paper presents a general method of the generalized projective synchronization and the parameter identification between two different chaotic systems with unknown parameters. This approach is based on Lyapunov stability theory, and employs a combination of feedback control and adaptive control. With this method one can achieve the generalized projective synchronization and realize the parameter identifications between almost all chaotic (hyperchaotic) systems with unknown parameters. Numerical simulations results are presented to demonstrate the effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50875259)
文摘Based on Lyapunov theory, the adaptive generalized synchronization between Chen system and a multi-scroll chaotic system is investigated. According to the form of target function a proper adaptive controller is designed, by which the controlled Chen system can be synchronized with a multi-scroll chaotic system including unknown parameters. The Lyapunov direct method is exploited to prove that the synchronization error and parameter identification error both converge to zero. Numerical simulation results verify the feasibility of the proposed method further.
基金the Foundation of Chongqing Education Committee under Grant No.J070502
文摘In this paper,using scalar feedback controller and stability theory of fractional-order systems,a gener-alized synchronization method for different fractional-order chaotic systems is established.Simulation results show theeffectiveness of the theoretical results.
文摘This paper is concerned with the existence of adaptive generalized synchronization(GS) of two chaotic systems.An adaptive control is designed based on a Lyapunov approach.By using modified system approach,some sufficient conditions for the existence of first two types of adaptive GS inertial manifolds are established.Finally,some numerical simulations are provided to illustrate the theoretical results.
文摘In this paper, a very simple generalized synchronization method between different chaotic systems is presented. Only a scalar controller is used in this method. The method of obtaining the scalar controller from chaotic systems is established. The sufficient and necessary condition of generalized synchronization is obtained from a rigorous theory, and the sufficient and necessary condition of generalized synchronization is irrelative to chaotic system itself. Theoretical analyses and simulation results show that the method established in this paper is effective.
文摘Based on the Chen chaotic system, this paper constructs a new three-dimensional chaotic system with higher order nonlinear term and studies the basic dynamic behaviours of the system. The modified generalized projective synchronization has been observed in the coupled new three-dimensional chaotic system with unknown parameters. Furthermore, based on Lyapunov stability theory, it obtains the control laws and adaptive laws of parameters to make modified generalized projective synchronization of the coupled new three-dimensional chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
基金Project supported by the National Natural Science Foundation of China (Grant No 20373021) and Natural Science Foundation of Liaoning Province (Grant No 20052151).
文摘A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state wriables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.
基金supported by the Natural Science Foundation of Hebei Province,China (Grant Nos A2008000136 and A2006000128)
文摘The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.
文摘Adaptive H∞ synchronization of chaotic systems via linear and nonlinear feedback control is investigated. The chaotic systems are redesigned by using the generalized Hamiltonian systems and observer approach. Based on Lya-punov's stability theory, linear and nonlinear feedback control of adaptive H∞ synchronization is established in order to not only guarantee stable synchronization of both master and slave systems but also reduce the effect of external disturbance on an Hoe-norm constraint. Adaptive H∞ synchronization of chaotic systems via three kinds of control is investigated with applications to Lorenz and Chen systems. Numerical simulations are also given to identify the effectiveness of the theoretical analysis.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11002061 and 10901073)the Fundamental Research Funds for the Central Universities,China (Grant No.JUSRP11117)
文摘A complex network consisting of chaotic systems is considered and the existence of the HSlder continuous gen- eralized synchronization in the network is studied. First, we divide nodes of the network into two parts according to their dynamical behaviour. Then, based on the Schauder fixed point theorem, sufficient conditions for the existence of the generalized synchronization between them are derived. Moreover, the results are theoretically proved. Numerical simulations validate the theory.
基金Project supported in part by the State Key Program of National Natural Science Foundation of China (Grant No 70431002)the National Basic Research Program of China (Grant No 2007CB814800)+3 种基金the Doctorate Foundation of the State Education Ministry of China (Grant No 20060027009)Supports from the Research Grant Council (RGC)the Hong Kong Baptist University Faculty Research Grant (FRG)the Croucher Foundation of Hong Kong are acknowledged
文摘Nonlinear dynamics of the time-delayed Mackey-Glass systems is explored. Coexistent multiple chaotic attractors are found. Attractors with double-scroll structures can be well classified in terms of different return times within one period of the delay time by constructing the Poincare section. Synchronizations of the drive-response Mackey-Glass oscillators are investigated. The critical coupling strength for the emergence of generalized synchronization against the delay time exhibits the interesting resonant behaviour. We reveal that stronger resonance effect may be observed when different attractors are applied to the drivers, i.e., more resonance peaks can be found.