Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to cr...Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to credit card transactions are two prevalent issues in the current study field of CCFD,which significantly impact classification models’performance.To address these issues,this research proposes a novel CCFD model based on Multifeature Fusion and Generative Adversarial Networks(MFGAN).The MFGAN model consists of two modules:a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified highdimensional feature space,and a balance module based on the generative adversarial network to decrease the class imbalance ratio.The effectiveness of theMFGAN model is validated on two actual credit card datasets.The impacts of different class balance ratios on the performance of the four resamplingmodels are analyzed,and the contribution of the two different modules to the performance of the MFGAN model is investigated via ablation experiments.Experimental results demonstrate that the proposed model does better than state-of-the-art models in terms of recall,F1,and Area Under the Curve(AUC)metrics,which means that the MFGAN model can help banks find more fraudulent transactions and reduce fraud losses.展开更多
Refrigeration system holds an important role in process industries. The optimal synthesis cannot only reduce the energy consumption, but also save the production costs. In this study, a general methodology is develope...Refrigeration system holds an important role in process industries. The optimal synthesis cannot only reduce the energy consumption, but also save the production costs. In this study, a general methodology is developed for the optimal design of refrigeration cycle and heat exchanger network(HEN) simultaneously. Taking the heat integration between the external heat sources/sinks and the refrigeration cycle into consideration, a superstructure with sub-coolers is developed. Through defining logical variables that indicate the relative temperature positions of refrigerant streams after sub-coolers, the synthesis is formulated as a Generalized Disjunctive Programming(GDP) problem based on LP transshipment model, with the target of minimizing the total compressor shaft work in the refrigeration system. The GDP model is then reformulated as a Mixed Integer Nonlinear Programming(MINLP) problem with the aid of binary variables and Big-M Constraint Method. The efficacy of the process synthesis model is demonstrated by a case study of ethylene refrigeration system. The result shows that the optimization can significantly reduce the exergy loss as well as the total compression shaft work.展开更多
基金supported by the National Key R&D Program of China(Nos.2022YFB3104103,and 2019QY1406)the National Natural Science Foundation of China(Nos.61732022,61732004,61672020,and 62072131).
文摘Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to credit card transactions are two prevalent issues in the current study field of CCFD,which significantly impact classification models’performance.To address these issues,this research proposes a novel CCFD model based on Multifeature Fusion and Generative Adversarial Networks(MFGAN).The MFGAN model consists of two modules:a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified highdimensional feature space,and a balance module based on the generative adversarial network to decrease the class imbalance ratio.The effectiveness of theMFGAN model is validated on two actual credit card datasets.The impacts of different class balance ratios on the performance of the four resamplingmodels are analyzed,and the contribution of the two different modules to the performance of the MFGAN model is investigated via ablation experiments.Experimental results demonstrate that the proposed model does better than state-of-the-art models in terms of recall,F1,and Area Under the Curve(AUC)metrics,which means that the MFGAN model can help banks find more fraudulent transactions and reduce fraud losses.
基金Supported by the National Natural Science Foundation of China(21676183)
文摘Refrigeration system holds an important role in process industries. The optimal synthesis cannot only reduce the energy consumption, but also save the production costs. In this study, a general methodology is developed for the optimal design of refrigeration cycle and heat exchanger network(HEN) simultaneously. Taking the heat integration between the external heat sources/sinks and the refrigeration cycle into consideration, a superstructure with sub-coolers is developed. Through defining logical variables that indicate the relative temperature positions of refrigerant streams after sub-coolers, the synthesis is formulated as a Generalized Disjunctive Programming(GDP) problem based on LP transshipment model, with the target of minimizing the total compressor shaft work in the refrigeration system. The GDP model is then reformulated as a Mixed Integer Nonlinear Programming(MINLP) problem with the aid of binary variables and Big-M Constraint Method. The efficacy of the process synthesis model is demonstrated by a case study of ethylene refrigeration system. The result shows that the optimization can significantly reduce the exergy loss as well as the total compression shaft work.