In the present study we have formulated a Minimum Cross Fuzzy Entropy Problem (Minx(F)EntP) and proposed sufficient conditions for existence of its solution. Mentioned problem can be formulated as follows. In the ...In the present study we have formulated a Minimum Cross Fuzzy Entropy Problem (Minx(F)EntP) and proposed sufficient conditions for existence of its solution. Mentioned problem can be formulated as follows. In the set of membership functions satisfying the given moment constraints generated by given moment functions it is required to choose the membership function that is closest to a priori membership function in the sense of cross fuzzy entropy measure. The existence of solution of formulated problem is proved by virtue of concavity property of cross fuzzy entropy measure, the implicit function theorem and Lagrange multipliers method. Moreover, Generalized Cross Fuzzy Entropy Optimization Methods in the form of MinMinx(F)EntM and MaxMinx(F)EntM are suggested on the basis of primary phase of minimizing cross fuzzy entropy measure for fixed moment vector function and on the definition of the special functional with Minx(F)Ent values of cross fuzzy entropy measure. Next phase for obtaining mentioned distributions consists of optimization of defined functional with respect to moment vector functions. Distributions obtained by mentioned methods are defined as (MinMinx(F)Ent)m and (MaxMinx(F)Ent)m distributions.展开更多
The objective of this work is to estimate the accuracy of a predicted velocity profile which can be gained from experimental results, in comparison with the exact ones by the methodology of entropy generation. The ana...The objective of this work is to estimate the accuracy of a predicted velocity profile which can be gained from experimental results, in comparison with the exact ones by the methodology of entropy generation. The analysis is concerned with the entropy generation rate in hydrodynamic, steady, laminar, and incompressible flow for Newtonian fluids in the insulated channels of arbitrary cross section. The entropy generation can be calculated from two local and overall techniques. Adaptation of the results of these techniques depends on the used velocity profile. Results express that in experimental works, whatever the values of local and overall entropy generation rates are close to each other, the results are more accuracy. In order to extent the subject, different geometries have been investigated. Also, the influence studied, and the distribution of volumetric geometries is drawn. of geometry on the entropy generation rate is local entropy generation rate for the selected geometries is drawn.展开更多
根据频谱扩展-压缩(spectrum spread and compression,SSC)移频干扰信号和回波信号时频分布特性的差异,提出一种基于广义S变换和Tsallis交叉熵阈值分割的干扰抑制方法。分析了SSC移频干扰的干扰原理和干扰信号经过解线调后的信号形式,...根据频谱扩展-压缩(spectrum spread and compression,SSC)移频干扰信号和回波信号时频分布特性的差异,提出一种基于广义S变换和Tsallis交叉熵阈值分割的干扰抑制方法。分析了SSC移频干扰的干扰原理和干扰信号经过解线调后的信号形式,并利用时频聚焦性较好的广义S变换获取接收信号经过解线调后的时频图像,根据时频图像对应的灰度图像,以Tsallis交叉熵最小化作为目标函数,求出灰度图像的最佳分割阈值,并根据分割阈值构建时频滤波器,实现干扰抑制。仿真结果表明:该方法对于SSC移频干扰产生的假目标具有较好的抑制效果,干扰抑制比可达30 dB以上。展开更多
文摘In the present study we have formulated a Minimum Cross Fuzzy Entropy Problem (Minx(F)EntP) and proposed sufficient conditions for existence of its solution. Mentioned problem can be formulated as follows. In the set of membership functions satisfying the given moment constraints generated by given moment functions it is required to choose the membership function that is closest to a priori membership function in the sense of cross fuzzy entropy measure. The existence of solution of formulated problem is proved by virtue of concavity property of cross fuzzy entropy measure, the implicit function theorem and Lagrange multipliers method. Moreover, Generalized Cross Fuzzy Entropy Optimization Methods in the form of MinMinx(F)EntM and MaxMinx(F)EntM are suggested on the basis of primary phase of minimizing cross fuzzy entropy measure for fixed moment vector function and on the definition of the special functional with Minx(F)Ent values of cross fuzzy entropy measure. Next phase for obtaining mentioned distributions consists of optimization of defined functional with respect to moment vector functions. Distributions obtained by mentioned methods are defined as (MinMinx(F)Ent)m and (MaxMinx(F)Ent)m distributions.
基金partly supported by a grant from the Center of Excellence on Modeling and Control Systems (CEMCS) of Ferdowsi University of Mashhad,Iran
文摘The objective of this work is to estimate the accuracy of a predicted velocity profile which can be gained from experimental results, in comparison with the exact ones by the methodology of entropy generation. The analysis is concerned with the entropy generation rate in hydrodynamic, steady, laminar, and incompressible flow for Newtonian fluids in the insulated channels of arbitrary cross section. The entropy generation can be calculated from two local and overall techniques. Adaptation of the results of these techniques depends on the used velocity profile. Results express that in experimental works, whatever the values of local and overall entropy generation rates are close to each other, the results are more accuracy. In order to extent the subject, different geometries have been investigated. Also, the influence studied, and the distribution of volumetric geometries is drawn. of geometry on the entropy generation rate is local entropy generation rate for the selected geometries is drawn.
文摘根据频谱扩展-压缩(spectrum spread and compression,SSC)移频干扰信号和回波信号时频分布特性的差异,提出一种基于广义S变换和Tsallis交叉熵阈值分割的干扰抑制方法。分析了SSC移频干扰的干扰原理和干扰信号经过解线调后的信号形式,并利用时频聚焦性较好的广义S变换获取接收信号经过解线调后的时频图像,根据时频图像对应的灰度图像,以Tsallis交叉熵最小化作为目标函数,求出灰度图像的最佳分割阈值,并根据分割阈值构建时频滤波器,实现干扰抑制。仿真结果表明:该方法对于SSC移频干扰产生的假目标具有较好的抑制效果,干扰抑制比可达30 dB以上。