Based on the concept of discrete adiabatic invariant, this paper studies the perturbation to Mei symmetry and Mei adiabatic invariants of the discrete generalized Birkhoffian system. The discrete Mei exact invariant i...Based on the concept of discrete adiabatic invariant, this paper studies the perturbation to Mei symmetry and Mei adiabatic invariants of the discrete generalized Birkhoffian system. The discrete Mei exact invariant induced from the Mei symmetry of the system without perturbation is given. The criterion of the perturbation to Mei symmetry is established and the discrete Mei adiabatic invariant induced from the perturbation to Mei symmetry is obtained. Meanwhile, an example is discussed to illustrate the application of the results.展开更多
The Noether symmetry, the Mei symmetry and the conserved quantities of discrete generalized Birkhoffian system are studied in this paper. Using the difference discrete variational approach, the difference discrete var...The Noether symmetry, the Mei symmetry and the conserved quantities of discrete generalized Birkhoffian system are studied in this paper. Using the difference discrete variational approach, the difference discrete variational principle of discrete generalized Birkhoffian system is derived. The discrete equations of motion of the system are established. The criterion of Noether symmetry and Mei symmetry of the system is given. The discrete Noether and Mei conserved quantities and the conditions for their existence are obtained. Finally, an example is given to show the applications of the results.展开更多
The purpose of this article is to investigate the sufficient conditions for the global asymptotic stability of one equilibrium point of a generalized Ricker competition system,……which appears as a model for dynamics...The purpose of this article is to investigate the sufficient conditions for the global asymptotic stability of one equilibrium point of a generalized Ricker competition system,……which appears as a model for dynamics with one extinct species, by applying the technique of average functions and the new principle of competitive exclusion.展开更多
A generalized dissipative discrete complex Ginzburg-Landau equation that governs the wave propagation in dissipative discrete nonlinear electrical transmission line with negative nonlinear resistance is derived. This ...A generalized dissipative discrete complex Ginzburg-Landau equation that governs the wave propagation in dissipative discrete nonlinear electrical transmission line with negative nonlinear resistance is derived. This equation presents arbitrarily nearest-neighbor nonlinearities. We analyze the properties of such model both in connection to their modulational stability, as well as in regard to the generation of intrinsic localized modes. We present a generalized discrete Lange-Newell criterion. Numerical simulations are performed and we show that discrete breathers are generated through modulational instability.展开更多
Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the co...Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.展开更多
We propose a reverse-space nonlocal nonlinear self-dual network equation under special symmetry reduction,which may have potential applications in electric circuits.Nonlocal infinitely many conservation laws are const...We propose a reverse-space nonlocal nonlinear self-dual network equation under special symmetry reduction,which may have potential applications in electric circuits.Nonlocal infinitely many conservation laws are constructed based on its Lax pair.Nonlocal discrete generalized(m,N−m)-fold Darboux transformation is extended and applied to solve this system.As an application of the method,we obtain multi-soliton solutions in zero seed background via the nonlocal discrete N-fold Darboux transformation and rational solutions from nonzero-seed background via the nonlocal discrete generalized(1,N−1)-fold Darboux transformation,respectively.By using the asymptotic and graphic analysis,structures of one-,two-,three-and four-soliton solutions are shown and discussed graphically.We find that single component field in this nonlocal system displays unstable soliton structure whereas the combined potential terms exhibit stable soliton structures.It is shown that the soliton structures are quite different between discrete local and nonlocal systems.Results given in this paper may be helpful for understanding the electrical signals propagation.展开更多
In this paper, we have proved that the lower bound of the number of real multiplications for computing a length 2(t) real GFT(a,b) (a = +/-1/2, b = 0 or b = +/-1/2, a = 0) is 2(t+1) - 2t - 2 and that for computing a l...In this paper, we have proved that the lower bound of the number of real multiplications for computing a length 2(t) real GFT(a,b) (a = +/-1/2, b = 0 or b = +/-1/2, a = 0) is 2(t+1) - 2t - 2 and that for computing a length 2t real GFT(a,b)(a = +/-1/2, b = +/-1/2) is 2(t+1) - 2. Practical algorithms which meet the lower bounds of multiplications are given.展开更多
It is well known that soliton interactions in discrete integrable systems often possess new properties which are different from the continuous integrable systems, e.g., we found that there are such discrete solitons i...It is well known that soliton interactions in discrete integrable systems often possess new properties which are different from the continuous integrable systems, e.g., we found that there are such discrete solitons in a semidiserete integrable system (the time variable is continuous and the space one is discrete) that the shorter solitary waves travel faster than the taller ones. Very recently, this kind of soliton was also observed in a full discrete generalized KdV system (the both of time and space variables are discrete) introduced by Kanki et al. In this paper, for the generalized discrete KdV (gdKdV) equation, we describe its richer structures of one-soliton solutions. The interactions of two-soliton waves to the gdKdV equation are studied. Some new features of the soliton interactions are proposed by rigorous theoretical analysis.展开更多
We establish some new n-independent-variable discrete inequalities which are analo- gous to some Langenhop-Gollwitzer type integral inequalities obtained by the present author in J. Math.Anal.Appl.,109(1985),171-181.A...We establish some new n-independent-variable discrete inequalities which are analo- gous to some Langenhop-Gollwitzer type integral inequalities obtained by the present author in J. Math.Anal.Appl.,109(1985),171-181.An application to hyperbolic summary-difference equations in n variables is also sketched.展开更多
Under investigation in this paper is a relativistic Toda lattice system with one perturbation parameterαabbreviated as RTLαsystem by Suris,which may describe the motions of particles in lattices interacting through ...Under investigation in this paper is a relativistic Toda lattice system with one perturbation parameterαabbreviated as RTLαsystem by Suris,which may describe the motions of particles in lattices interacting through an exponential interaction force.First of all,an integrable lattice hierarchy associated with an RTLαsystem is constructed,from which some relevant integrable properties such as Hamiltonian structures,Liouville integrability and conservation laws are investigated.Secondly,the discrete generalized(m,2 N-m)-fold Darboux transformation is constructed to derive multi-soliton solutions,higher-order rational and semirational solutions,and their mixed solutions of an RTLαsystem.The soliton elastic interactions and details of rational solutions are analyzed via the graphics and asymptotic analysis.Finally,soliton dynamical evolutions are investigated via numerical simulations,showing that a small noise has very little effect on the soliton propagation.These results may provide new insight into nonlinear lattice dynamics described by RTLαsystem.展开更多
The theory of uniform design has received increasing interest because of its wide application in the field of computer experiments.The generalized discrete discrepancy is proposed to evaluate the uniformity of the mix...The theory of uniform design has received increasing interest because of its wide application in the field of computer experiments.The generalized discrete discrepancy is proposed to evaluate the uniformity of the mixed-level factorial design.In this paper,the authors give a lower bound of the generalized discrete discrepancy and provide some construction methods of optimal mixed-level uniform designs which can achieve this lower bound.These methods are all deterministic construction methods which can avoid the complexity of stochastic algorithms.Both saturated mixed-level uniform designs and supersaturated mixed-level uniform designs can be obtained with these methods.Moreover,the resulting designs are also χ^(2)-optimal and minimum moment aberration designs.展开更多
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 09CX04018A)
文摘Based on the concept of discrete adiabatic invariant, this paper studies the perturbation to Mei symmetry and Mei adiabatic invariants of the discrete generalized Birkhoffian system. The discrete Mei exact invariant induced from the Mei symmetry of the system without perturbation is given. The criterion of the perturbation to Mei symmetry is established and the discrete Mei adiabatic invariant induced from the perturbation to Mei symmetry is obtained. Meanwhile, an example is discussed to illustrate the application of the results.
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 09CX04018A)
文摘The Noether symmetry, the Mei symmetry and the conserved quantities of discrete generalized Birkhoffian system are studied in this paper. Using the difference discrete variational approach, the difference discrete variational principle of discrete generalized Birkhoffian system is derived. The discrete equations of motion of the system are established. The criterion of Noether symmetry and Mei symmetry of the system is given. The discrete Noether and Mei conserved quantities and the conditions for their existence are obtained. Finally, an example is given to show the applications of the results.
文摘The purpose of this article is to investigate the sufficient conditions for the global asymptotic stability of one equilibrium point of a generalized Ricker competition system,……which appears as a model for dynamics with one extinct species, by applying the technique of average functions and the new principle of competitive exclusion.
文摘A generalized dissipative discrete complex Ginzburg-Landau equation that governs the wave propagation in dissipative discrete nonlinear electrical transmission line with negative nonlinear resistance is derived. This equation presents arbitrarily nearest-neighbor nonlinearities. We analyze the properties of such model both in connection to their modulational stability, as well as in regard to the generation of intrinsic localized modes. We present a generalized discrete Lange-Newell criterion. Numerical simulations are performed and we show that discrete breathers are generated through modulational instability.
基金Project supported by the National Natural Science Foundation of China (Grant No.12071042)Beijing Natural Science Foundation (Grant No.1202006)。
文摘Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12071042 and 61471406)the Beijing Natural Science Foundation,China(Grant No.1202006)Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University(QXTCP-B201704).
文摘We propose a reverse-space nonlocal nonlinear self-dual network equation under special symmetry reduction,which may have potential applications in electric circuits.Nonlocal infinitely many conservation laws are constructed based on its Lax pair.Nonlocal discrete generalized(m,N−m)-fold Darboux transformation is extended and applied to solve this system.As an application of the method,we obtain multi-soliton solutions in zero seed background via the nonlocal discrete N-fold Darboux transformation and rational solutions from nonzero-seed background via the nonlocal discrete generalized(1,N−1)-fold Darboux transformation,respectively.By using the asymptotic and graphic analysis,structures of one-,two-,three-and four-soliton solutions are shown and discussed graphically.We find that single component field in this nonlocal system displays unstable soliton structure whereas the combined potential terms exhibit stable soliton structures.It is shown that the soliton structures are quite different between discrete local and nonlocal systems.Results given in this paper may be helpful for understanding the electrical signals propagation.
文摘In this paper, we have proved that the lower bound of the number of real multiplications for computing a length 2(t) real GFT(a,b) (a = +/-1/2, b = 0 or b = +/-1/2, a = 0) is 2(t+1) - 2t - 2 and that for computing a length 2t real GFT(a,b)(a = +/-1/2, b = +/-1/2) is 2(t+1) - 2. Practical algorithms which meet the lower bounds of multiplications are given.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11501353,11271254,11428102,and 11671255supported by the Ministry of Economy and Competitiveness of Spain under contracts MTM2012-37070 and MTM2016-80276-P(AEI/FEDER,EU)
文摘It is well known that soliton interactions in discrete integrable systems often possess new properties which are different from the continuous integrable systems, e.g., we found that there are such discrete solitons in a semidiserete integrable system (the time variable is continuous and the space one is discrete) that the shorter solitary waves travel faster than the taller ones. Very recently, this kind of soliton was also observed in a full discrete generalized KdV system (the both of time and space variables are discrete) introduced by Kanki et al. In this paper, for the generalized discrete KdV (gdKdV) equation, we describe its richer structures of one-soliton solutions. The interactions of two-soliton waves to the gdKdV equation are studied. Some new features of the soliton interactions are proposed by rigorous theoretical analysis.
文摘We establish some new n-independent-variable discrete inequalities which are analo- gous to some Langenhop-Gollwitzer type integral inequalities obtained by the present author in J. Math.Anal.Appl.,109(1985),171-181.An application to hyperbolic summary-difference equations in n variables is also sketched.
基金supported by National Natural Science Foundation of China (Grant No. 12 071 042)Beijing Natural Science Foundation (Grant No. 1 202 006)。
文摘Under investigation in this paper is a relativistic Toda lattice system with one perturbation parameterαabbreviated as RTLαsystem by Suris,which may describe the motions of particles in lattices interacting through an exponential interaction force.First of all,an integrable lattice hierarchy associated with an RTLαsystem is constructed,from which some relevant integrable properties such as Hamiltonian structures,Liouville integrability and conservation laws are investigated.Secondly,the discrete generalized(m,2 N-m)-fold Darboux transformation is constructed to derive multi-soliton solutions,higher-order rational and semirational solutions,and their mixed solutions of an RTLαsystem.The soliton elastic interactions and details of rational solutions are analyzed via the graphics and asymptotic analysis.Finally,soliton dynamical evolutions are investigated via numerical simulations,showing that a small noise has very little effect on the soliton propagation.These results may provide new insight into nonlinear lattice dynamics described by RTLαsystem.
基金supported by the National Natural Science Foundation of China under Grant Nos.12131001,12226343,12371260,and 12371261National Ten Thousand Talents Program of Chinathe 111 Project under Grant No.B20016.
文摘The theory of uniform design has received increasing interest because of its wide application in the field of computer experiments.The generalized discrete discrepancy is proposed to evaluate the uniformity of the mixed-level factorial design.In this paper,the authors give a lower bound of the generalized discrete discrepancy and provide some construction methods of optimal mixed-level uniform designs which can achieve this lower bound.These methods are all deterministic construction methods which can avoid the complexity of stochastic algorithms.Both saturated mixed-level uniform designs and supersaturated mixed-level uniform designs can be obtained with these methods.Moreover,the resulting designs are also χ^(2)-optimal and minimum moment aberration designs.