In this paper, we focus on a new approach based on new generalized hesitant fuzzy hybrid weighted aggregation operators, in which the evaluation information provided by decision makers is expressed in hesitant fuzzy e...In this paper, we focus on a new approach based on new generalized hesitant fuzzy hybrid weighted aggregation operators, in which the evaluation information provided by decision makers is expressed in hesitant fuzzy elements (HFEs) and the information about attribute weights and aggregation-associated vector is unknown. More explicitly, some new generalized hesitant fuzzy hybrid weighted aggregation operators are proposed, such as the new generalized hesitant fuzzy hybrid weighted averaging (NGHFHWA) operator and the new generalized hesitant fuzzy hybrid weighted geometric (NGHFHWG) operator. Some desirable properties and the relationships between them are discussed. Then, a new algorithm for hesitant fuzzy multi-attribute decision making (HF-MADM) problems with unknown weight information is introduced. Further, a practical example is used to illustrate the detailed implementation process of the proposed approach. A sensitivity analysis of the decision results is analyzed with different parameters. Finally, comparative studies are given to verify the advantages of our method.展开更多
文摘In this paper, we focus on a new approach based on new generalized hesitant fuzzy hybrid weighted aggregation operators, in which the evaluation information provided by decision makers is expressed in hesitant fuzzy elements (HFEs) and the information about attribute weights and aggregation-associated vector is unknown. More explicitly, some new generalized hesitant fuzzy hybrid weighted aggregation operators are proposed, such as the new generalized hesitant fuzzy hybrid weighted averaging (NGHFHWA) operator and the new generalized hesitant fuzzy hybrid weighted geometric (NGHFHWG) operator. Some desirable properties and the relationships between them are discussed. Then, a new algorithm for hesitant fuzzy multi-attribute decision making (HF-MADM) problems with unknown weight information is introduced. Further, a practical example is used to illustrate the detailed implementation process of the proposed approach. A sensitivity analysis of the decision results is analyzed with different parameters. Finally, comparative studies are given to verify the advantages of our method.