The existence of a global smooth solution for the initial value problem of generalized Kuramoto-Sivashinsky type equations have been obtained. Similarty siolutions and the structure of the traveling waves solution for...The existence of a global smooth solution for the initial value problem of generalized Kuramoto-Sivashinsky type equations have been obtained. Similarty siolutions and the structure of the traveling waves solution for the generalized KS equations are discussed and analysed by using the qualitative theory of ODE and Lie's infinitesimal transformation respectively.展开更多
In this paper, two kinds of initial boundary value problems for Kuramoto_Sivashinsky equation are considered. Some prior estimates are derived by Galerkin methods. The existence, uniqueness and regularities of the gen...In this paper, two kinds of initial boundary value problems for Kuramoto_Sivashinsky equation are considered. Some prior estimates are derived by Galerkin methods. The existence, uniqueness and regularities of the generalized global solutions and the classical global solutions for the equation are proved. Morever, the asymptotic behavior of these solutions are considered under some conditions.展开更多
The solution of nonlinear parabolic equation arising from population dynamics with boundary and initial value are established by the finite difference method,as well as it denotes the unique generalized global solution.
文摘The existence of a global smooth solution for the initial value problem of generalized Kuramoto-Sivashinsky type equations have been obtained. Similarty siolutions and the structure of the traveling waves solution for the generalized KS equations are discussed and analysed by using the qualitative theory of ODE and Lie's infinitesimal transformation respectively.
文摘In this paper, two kinds of initial boundary value problems for Kuramoto_Sivashinsky equation are considered. Some prior estimates are derived by Galerkin methods. The existence, uniqueness and regularities of the generalized global solutions and the classical global solutions for the equation are proved. Morever, the asymptotic behavior of these solutions are considered under some conditions.
文摘The solution of nonlinear parabolic equation arising from population dynamics with boundary and initial value are established by the finite difference method,as well as it denotes the unique generalized global solution.