期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Sampling formulas for 2D quaternionic signals associated with various quaternion Fourier and linear canonical transforms
1
作者 Xiaoxiao Hu Dong CHENG Kit Ian KOU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第3期463-478,共16页
The main purpose of this paper is to study different types of sampling formulas of quaternionic functions,which are bandlimited under various quaternion Fourier and linear canonical transforms.We show that the quatern... The main purpose of this paper is to study different types of sampling formulas of quaternionic functions,which are bandlimited under various quaternion Fourier and linear canonical transforms.We show that the quaternionic bandlimited functions can be reconstructed from their samples as well as the samples of their derivatives and Hilbert transforms.In addition,the relationships among different types of sampling formulas under various transforms are discussed.First,if the quaternionic function is bandlimited to a rectangle that is symmetric about the origin,then the sampling formulas under various quaternion Fourier transforms are identical.If this rectangle is not symmetric about the origin,then the sampling formulas under various quaternion Fourier transforms are different from each other.Second,using the relationship between the two-sided quaternion Fourier transform and the linear canonical transform,we derive sampling formulas under various quaternion linear canonical transforms.Third,truncation errors of these sampling formulas are estimated.Finally,some simulations are provided to show how the sampling formulas can be used in applications. 展开更多
关键词 Quaternion Fourier transforms Quaternion linear canonical transforms Sampling theorem Quaternion partial and total hilbert transforms generalized quaternion partial and total hilbert transforms Truncation errors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部