情感计算是现代人机交互中的关键问题,随着人工智能的发展,基于脑电信号(electroencephalogram, EEG)的情绪识别已经成为重要的研究方向.为了提高情绪识别的分类精度,本研究引入堆叠自动编码器(stacked autoencoder, SAE)对EEG多通道信...情感计算是现代人机交互中的关键问题,随着人工智能的发展,基于脑电信号(electroencephalogram, EEG)的情绪识别已经成为重要的研究方向.为了提高情绪识别的分类精度,本研究引入堆叠自动编码器(stacked autoencoder, SAE)对EEG多通道信号进行深度特征提取,并提出一种基于广义正态分布优化的支持向量机(generalized normal distribution optimization based support vector machine, GNDO-SVM)情绪识别模型.实验结果表明,与基于遗传算法、粒子群算法和麻雀搜索算法优化的支持向量机模型相比,所提出的GNDO-SVM模型具有更优的分类性能,基于SAE深度特征的情感识别准确率达到了90.94%,表明SAE能够有效地挖掘EEG信号不同通道间的深度相关性信息.因此,利用SAE深度特征结合GNDO-SVM模型可以有效地实现EEG信号的情绪识别.展开更多
对光伏上网发电量进行短期预测,可以为电力部门的调度以及用电计划的调整提供参考.提出了一种基于最小二乘支持向量机(least square support vector machines,LS-SVM)对短期光伏上网发电量的预测方法,LSSVM方法具有好的泛化能力.以甘肃...对光伏上网发电量进行短期预测,可以为电力部门的调度以及用电计划的调整提供参考.提出了一种基于最小二乘支持向量机(least square support vector machines,LS-SVM)对短期光伏上网发电量的预测方法,LSSVM方法具有好的泛化能力.以甘肃某地区电厂的并网发电全年实测数据为实例,同时考虑到短期太阳辐射和光伏电池温度对光伏发电量的影响,建立了基于LS-SVM的短期预测模型.与现有的前向神经网络预测方法进行比较,实验结果表明,该方法能获得更好的预测效果,具有一定的应用潜力.展开更多
文摘情感计算是现代人机交互中的关键问题,随着人工智能的发展,基于脑电信号(electroencephalogram, EEG)的情绪识别已经成为重要的研究方向.为了提高情绪识别的分类精度,本研究引入堆叠自动编码器(stacked autoencoder, SAE)对EEG多通道信号进行深度特征提取,并提出一种基于广义正态分布优化的支持向量机(generalized normal distribution optimization based support vector machine, GNDO-SVM)情绪识别模型.实验结果表明,与基于遗传算法、粒子群算法和麻雀搜索算法优化的支持向量机模型相比,所提出的GNDO-SVM模型具有更优的分类性能,基于SAE深度特征的情感识别准确率达到了90.94%,表明SAE能够有效地挖掘EEG信号不同通道间的深度相关性信息.因此,利用SAE深度特征结合GNDO-SVM模型可以有效地实现EEG信号的情绪识别.
文摘对光伏上网发电量进行短期预测,可以为电力部门的调度以及用电计划的调整提供参考.提出了一种基于最小二乘支持向量机(least square support vector machines,LS-SVM)对短期光伏上网发电量的预测方法,LSSVM方法具有好的泛化能力.以甘肃某地区电厂的并网发电全年实测数据为实例,同时考虑到短期太阳辐射和光伏电池温度对光伏发电量的影响,建立了基于LS-SVM的短期预测模型.与现有的前向神经网络预测方法进行比较,实验结果表明,该方法能获得更好的预测效果,具有一定的应用潜力.