A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fra...A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fractional inequalities involving generalized midpoint type,trapezoid type and Simpson type are derived as consequences.Furthermore,as some applications,special means inequalities and numerical quadratures for local fractional integrals are discussed.展开更多
A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power...A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.展开更多
Let R0,n be the real Clifford algebra generated by e1, e2,... , en satisfying eiej+ejei=-2δij,i,j=1,2…,ne0 is the unit element.Let Ω be an open set. A function f is called left generalized analytic in ft if f sati...Let R0,n be the real Clifford algebra generated by e1, e2,... , en satisfying eiej+ejei=-2δij,i,j=1,2…,ne0 is the unit element.Let Ω be an open set. A function f is called left generalized analytic in ft if f satisfies the equation Lf=0,where ……qi 〉0, i =-, 1, - ……, n. In this article, we first give the kernel function for the generalized analytic function. Further, the Hilbert boundary value problem for generalized analytic functions in Rn+1 will be investigated.展开更多
It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire ...It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire error budget model.Trajectories calculated under non-standard conditions are considered to be perturbed.The tools utilized for the analysis of perturbed trajectories are weighting factor functions(WFFs)which are a special kind of sensitivity functions.WFFs are used for calculation of meteo ballistic elements B(ballistic wind w B,densityρB,virtual temperatureτB,pressure p B)as well.We have found that the existing theory of WFF calculation has several significant shortcomings.The aim of the article is to present a new,improved theory of generalized WFFs that eliminates the deficiencies found.Using this theory will improve methods for designing firing tables,fire control systems algorithms,and meteo message generation algorithms.展开更多
In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel function...In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel functions of the first kind, which is defined as z(Bκ+1^c f(z))′= κBκ^c f(z)-(κ- 1)Bκ+1^c f(z),where b, c, p ∈ C and κ = p +(b + 1)/2 ∈ C / Z0^-(Z0^-= {0,-1,-2, … }). The results are obtained by considering suitable classes of admissible functions. Various known or new special cases of our main results are also pointed out.展开更多
In this paper the authors introduce some new ideas on generalized numbers and generalized weak functions. They prove that the product of any two weak functions is a generalized weak function. So in particular they sol...In this paper the authors introduce some new ideas on generalized numbers and generalized weak functions. They prove that the product of any two weak functions is a generalized weak function. So in particular they solve the problem of the multiplication of two generalized functions.展开更多
In this paper, we define a functional optimization problem corresponding to smooth functions which its optimal solution is first derivative of these functions in a domain. These functional optimization problems are ap...In this paper, we define a functional optimization problem corresponding to smooth functions which its optimal solution is first derivative of these functions in a domain. These functional optimization problems are applied for non-smooth functions which by solving these problems we obtain a kind of generalized first derivatives. For this purpose, a linear programming problem corresponding functional optimization problem is obtained which their optimal solutions give the approximate generalized first derivative. We show the efficiency of our approach by obtaining derivative and generalized derivative of some smooth and nonsmooth functions respectively in some illustrative examples.展开更多
This paper discusses the mathematical modeling for the mechanics of solid using the distribution theory of Schwartz to the beam bending differential Equations. This problem is solved by the use of generalized function...This paper discusses the mathematical modeling for the mechanics of solid using the distribution theory of Schwartz to the beam bending differential Equations. This problem is solved by the use of generalized functions, among which is the well known Dirac delta function. The governing differential Equation is Euler-Bernoulli beams with jump discontinuities on displacements and rotations. Also, the governing differential Equations of a Timoshenko beam with jump discontinuities in slope, deflection, flexural stiffness, and shear stiffness are obtained in the space of generalized functions. The operator of one of the governing differential Equations changes so that for both Equations the Dirac Delta function and its first distributional derivative appear in the new force terms as we present the same in a Euler-Bernoulli beam. Examples are provided to illustrate the abstract theory. This research is useful to Mechanical Engineering, Ocean Engineering, Civil Engineering, and Aerospace Engineering.展开更多
In this paper, we introduce some new subclasses of meromorphically uniformly reciprocal starlike functions associated with the generalized Dziok-Srivastava operator and its corresponding integral operator defined by s...In this paper, we introduce some new subclasses of meromorphically uniformly reciprocal starlike functions associated with the generalized Dziok-Srivastava operator and its corresponding integral operator defined by subordination. We obtain the inclusion relation, sufficient conditions and raajorization property of the class. Moreover, we point out some new and interesting corollaries of our main result. These results generalize some known results.展开更多
In the present paper, we study the polynomial approximation of analytic functions of several complex variables. The characterizations of generalized type of analytic functions of several complex variables have been ob...In the present paper, we study the polynomial approximation of analytic functions of several complex variables. The characterizations of generalized type of analytic functions of several complex variables have been obtained in terms of approximation and interpolation errors.展开更多
In this note, we discuss a class of so-called generalized sampling functions. These functions are defined to be the inverse Fourier transform of a family of piecewise constant functions that are either square integrab...In this note, we discuss a class of so-called generalized sampling functions. These functions are defined to be the inverse Fourier transform of a family of piecewise constant functions that are either square integrable or Lebegue integrable on the real number line. They are in fact the generalization of the classic sinc function. Two approaches of constructing the generalized sampling functions are reviewed. Their properties such as cardinality, orthogonality, and decaying properties are discussed. The interactions of those functions and Hilbert transformer are also discussed.展开更多
In this paper, we consider the generalized translations associated with the Dunkl and the Jacobi-Dunkl differential-difference operators on the real line which provide the structure of signed hrpergroups on R. Especia...In this paper, we consider the generalized translations associated with the Dunkl and the Jacobi-Dunkl differential-difference operators on the real line which provide the structure of signed hrpergroups on R. Especially, we study the representation of the gener- alized translations of the product of two functions for these signed hypergroups.展开更多
We construct the generalized squeezed vacuum state by virtue of the entangled state 〈η| [Fan Hongyi and J.R. Klauder, Phys. Rev. A47 (1994) 777] and derive the quantum fluctuation of the two-mode quadrature operator...We construct the generalized squeezed vacuum state by virtue of the entangled state 〈η| [Fan Hongyi and J.R. Klauder, Phys. Rev. A47 (1994) 777] and derive the quantum fluctuation of the two-mode quadrature operators.We then calculate Wigner functions of the two-mode squeezed number states and generalized squeezing vacuum state in literature before.展开更多
In the present work, a unification of certain functions of mathematical physics is proposed and its properties are studied. The proposed function unifies Lommel function, Struve function, the Bessel-Maitland function ...In the present work, a unification of certain functions of mathematical physics is proposed and its properties are studied. The proposed function unifies Lommel function, Struve function, the Bessel-Maitland function and its generalization, Dotsenko function, generalized Mittag-Leffler function etc. The properties include absolute and uniform convergence, differential recurrence relation, integral representations in the form of Euler-Beta transform, Mellin-Barnes transform, Laplace transform and Whittaker transform. The special cases namely the generalized hypergeometric function, generalized Laguerre polynomial, Fox H-function etc. are also obtained.展开更多
GMM inference procedures based on the square of the modulus of the model characteristic function are developed using sample moments selected using estimating function theory and bypassing the use of empirical characte...GMM inference procedures based on the square of the modulus of the model characteristic function are developed using sample moments selected using estimating function theory and bypassing the use of empirical characteristic function of other GMM procedures in the literature. The procedures are relatively simple to implement and are less simulation-oriented than simulated methods of inferences yet have the potential of good efficiencies for models with densities without closed form. The procedures also yield better estimators than method of moment estimators for models with more than three parameters as higher order sample moments tend to be unstable.展开更多
In this paper, we proposed a Extension Definition to derive, simultaneously, the first, second and high order generalized derivatives for non-smooth functions, in which the involved functions are Riemann integrable bu...In this paper, we proposed a Extension Definition to derive, simultaneously, the first, second and high order generalized derivatives for non-smooth functions, in which the involved functions are Riemann integrable but not necessarily locally Lipschitz or continuous. Indeed, we define a functional optimization problem corresponding to smooth functions where its optimal solutions are the first and second derivatives of these functions in a domain. Then by applying these functional optimization problems for non-smooth functions and using this method we obtain generalized first derivative (GFD) and generalized second derivative (GSD). Here, the optimization problem is approximated with a linear programming problem that by solving of which, we can obtain these derivatives, as simple as possible. We extend this approach for obtaining generalized high order derivatives (GHODs) of non-smooth functions, simultaneously. Finally, for efficiency of our approach some numerical examples have been presented.展开更多
A sufficient condition for the order of approximation of a continuous 2π periodic function with a given majorant for the modulus of continuity by the [F, d_n] means of its Fourier serier to be of Jackson order is obt...A sufficient condition for the order of approximation of a continuous 2π periodic function with a given majorant for the modulus of continuity by the [F, d_n] means of its Fourier serier to be of Jackson order is obtained. This sufficient condition is shown to be not enough for the order of approximation by partial sums of their Fourier series to be of Jackson order. The error estimate is shown to be the best possible.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.11801342)the Natural Science Foundation of Shaanxi Province(Grant No.2023-JC-YB-043).
文摘A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fractional inequalities involving generalized midpoint type,trapezoid type and Simpson type are derived as consequences.Furthermore,as some applications,special means inequalities and numerical quadratures for local fractional integrals are discussed.
文摘A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.
基金supported by NNSF of China (11171260)RFDP of Higher Education of China (20100141110054)Scientific Research Fund of Leshan Normal University (Z1265)
文摘Let R0,n be the real Clifford algebra generated by e1, e2,... , en satisfying eiej+ejei=-2δij,i,j=1,2…,ne0 is the unit element.Let Ω be an open set. A function f is called left generalized analytic in ft if f satisfies the equation Lf=0,where ……qi 〉0, i =-, 1, - ……, n. In this article, we first give the kernel function for the generalized analytic function. Further, the Hilbert boundary value problem for generalized analytic functions in Rn+1 will be investigated.
基金support of financing from the Research Project for the Development of the Department of Weapons and Ammunition, Faculty of Military Technology, University of Defence, Brno, DZRO K–201
文摘It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire error budget model.Trajectories calculated under non-standard conditions are considered to be perturbed.The tools utilized for the analysis of perturbed trajectories are weighting factor functions(WFFs)which are a special kind of sensitivity functions.WFFs are used for calculation of meteo ballistic elements B(ballistic wind w B,densityρB,virtual temperatureτB,pressure p B)as well.We have found that the existing theory of WFF calculation has several significant shortcomings.The aim of the article is to present a new,improved theory of generalized WFFs that eliminates the deficiencies found.Using this theory will improve methods for designing firing tables,fire control systems algorithms,and meteo message generation algorithms.
基金partly supported by the Natural Science Foundation of China(11271045)the Higher School Doctoral Foundation of China(20100003110004)+2 种基金the Natural Science Foundation of Inner Mongolia of China(2010MS0117)athe Higher School Foundation of Inner Mongolia of China(NJZY13298)the Commission for the Scientific Research Projects of Kafkas Univertsity(2012-FEF-30)
文摘In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel functions of the first kind, which is defined as z(Bκ+1^c f(z))′= κBκ^c f(z)-(κ- 1)Bκ+1^c f(z),where b, c, p ∈ C and κ = p +(b + 1)/2 ∈ C / Z0^-(Z0^-= {0,-1,-2, … }). The results are obtained by considering suitable classes of admissible functions. Various known or new special cases of our main results are also pointed out.
文摘In this paper the authors introduce some new ideas on generalized numbers and generalized weak functions. They prove that the product of any two weak functions is a generalized weak function. So in particular they solve the problem of the multiplication of two generalized functions.
文摘In this paper, we define a functional optimization problem corresponding to smooth functions which its optimal solution is first derivative of these functions in a domain. These functional optimization problems are applied for non-smooth functions which by solving these problems we obtain a kind of generalized first derivatives. For this purpose, a linear programming problem corresponding functional optimization problem is obtained which their optimal solutions give the approximate generalized first derivative. We show the efficiency of our approach by obtaining derivative and generalized derivative of some smooth and nonsmooth functions respectively in some illustrative examples.
文摘This paper discusses the mathematical modeling for the mechanics of solid using the distribution theory of Schwartz to the beam bending differential Equations. This problem is solved by the use of generalized functions, among which is the well known Dirac delta function. The governing differential Equation is Euler-Bernoulli beams with jump discontinuities on displacements and rotations. Also, the governing differential Equations of a Timoshenko beam with jump discontinuities in slope, deflection, flexural stiffness, and shear stiffness are obtained in the space of generalized functions. The operator of one of the governing differential Equations changes so that for both Equations the Dirac Delta function and its first distributional derivative appear in the new force terms as we present the same in a Euler-Bernoulli beam. Examples are provided to illustrate the abstract theory. This research is useful to Mechanical Engineering, Ocean Engineering, Civil Engineering, and Aerospace Engineering.
基金Supported by the National Natural Science Foundation of China(11561001)Supported by the Natural Science Foundation of Inner Mongolia Province(2014MS0101)Supported by the Higher School Foundation of Inner Mongolia Province(2015NJZY240)
文摘In this paper, we introduce some new subclasses of meromorphically uniformly reciprocal starlike functions associated with the generalized Dziok-Srivastava operator and its corresponding integral operator defined by subordination. We obtain the inclusion relation, sufficient conditions and raajorization property of the class. Moreover, we point out some new and interesting corollaries of our main result. These results generalize some known results.
文摘In the present paper, we study the polynomial approximation of analytic functions of several complex variables. The characterizations of generalized type of analytic functions of several complex variables have been obtained in terms of approximation and interpolation errors.
文摘In this note, we discuss a class of so-called generalized sampling functions. These functions are defined to be the inverse Fourier transform of a family of piecewise constant functions that are either square integrable or Lebegue integrable on the real number line. They are in fact the generalization of the classic sinc function. Two approaches of constructing the generalized sampling functions are reviewed. Their properties such as cardinality, orthogonality, and decaying properties are discussed. The interactions of those functions and Hilbert transformer are also discussed.
文摘In this paper, we consider the generalized translations associated with the Dunkl and the Jacobi-Dunkl differential-difference operators on the real line which provide the structure of signed hrpergroups on R. Especially, we study the representation of the gener- alized translations of the product of two functions for these signed hypergroups.
文摘We construct the generalized squeezed vacuum state by virtue of the entangled state 〈η| [Fan Hongyi and J.R. Klauder, Phys. Rev. A47 (1994) 777] and derive the quantum fluctuation of the two-mode quadrature operators.We then calculate Wigner functions of the two-mode squeezed number states and generalized squeezing vacuum state in literature before.
文摘In the present work, a unification of certain functions of mathematical physics is proposed and its properties are studied. The proposed function unifies Lommel function, Struve function, the Bessel-Maitland function and its generalization, Dotsenko function, generalized Mittag-Leffler function etc. The properties include absolute and uniform convergence, differential recurrence relation, integral representations in the form of Euler-Beta transform, Mellin-Barnes transform, Laplace transform and Whittaker transform. The special cases namely the generalized hypergeometric function, generalized Laguerre polynomial, Fox H-function etc. are also obtained.
文摘GMM inference procedures based on the square of the modulus of the model characteristic function are developed using sample moments selected using estimating function theory and bypassing the use of empirical characteristic function of other GMM procedures in the literature. The procedures are relatively simple to implement and are less simulation-oriented than simulated methods of inferences yet have the potential of good efficiencies for models with densities without closed form. The procedures also yield better estimators than method of moment estimators for models with more than three parameters as higher order sample moments tend to be unstable.
文摘In this paper, we proposed a Extension Definition to derive, simultaneously, the first, second and high order generalized derivatives for non-smooth functions, in which the involved functions are Riemann integrable but not necessarily locally Lipschitz or continuous. Indeed, we define a functional optimization problem corresponding to smooth functions where its optimal solutions are the first and second derivatives of these functions in a domain. Then by applying these functional optimization problems for non-smooth functions and using this method we obtain generalized first derivative (GFD) and generalized second derivative (GSD). Here, the optimization problem is approximated with a linear programming problem that by solving of which, we can obtain these derivatives, as simple as possible. We extend this approach for obtaining generalized high order derivatives (GHODs) of non-smooth functions, simultaneously. Finally, for efficiency of our approach some numerical examples have been presented.
文摘A sufficient condition for the order of approximation of a continuous 2π periodic function with a given majorant for the modulus of continuity by the [F, d_n] means of its Fourier serier to be of Jackson order is obtained. This sufficient condition is shown to be not enough for the order of approximation by partial sums of their Fourier series to be of Jackson order. The error estimate is shown to be the best possible.