期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Solving method of generalized nonlinear dynamic least squares for data processing in building of digital mine
1
作者 陶华学 郭金运 《Journal of Coal Science & Engineering(China)》 2003年第2期54-57,共4页
Data are very important to build the digital mine. Data come from many sources, have different types and temporal states. Relations between one class of data and the other one, or between data and unknown parameters a... Data are very important to build the digital mine. Data come from many sources, have different types and temporal states. Relations between one class of data and the other one, or between data and unknown parameters are more nonlinear. The unknown parameters are non random or random, among which the random parameters often dynamically vary with time. Therefore it is not accurate and reliable to process the data in building the digital mine with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method to process data in building the digital mine is put forward. In the meantime, the corresponding mathematical model is also given. The generalized nonlinear least squares problem is more complex than the common nonlinear least squares problem and its solution is more difficultly obtained because the dimensions of data and parameters in the former are bigger. So a new solution model and the method are put forward to solve the generalized nonlinear dynamic least squares problem. In fact, the problem can be converted to two sub problems, each of which has a single variable. That is to say, a complex problem can be separated and then solved. So the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations. The method lessens the calculating load and opens up a new way to process the data in building the digital mine, which have more sources, different types and more temporal states. 展开更多
关键词 method for generalized nonlinear least squares separating algorithm iterative solution
下载PDF
Preconditioned iterative methods for solving weighted linear least squares problems 被引量:2
2
作者 沈海龙 邵新慧 张铁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第3期375-384,共10页
A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems... A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment. 展开更多
关键词 PRECONDITIONER generalized accelerated overrelaxation (GAOR) method weighted linear least squares problem CONVERGENCE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部