期刊文献+
共找到115篇文章
< 1 2 6 >
每页显示 20 50 100
THE GENERALIZED REFLEXIVE SOLUTION FOR A CLASS OF MATRIX EQUATIONS (AX-B,XC=D) 被引量:7
1
作者 李范良 胡锡炎 张磊 《Acta Mathematica Scientia》 SCIE CSCD 2008年第1期185-193,共9页
In this article, the generalized reflexive solution of matrix equations (AX = B, XC = D) is considered. With special properties of generalized reflexive matrices, the necessary and sufficient conditions for the solv... In this article, the generalized reflexive solution of matrix equations (AX = B, XC = D) is considered. With special properties of generalized reflexive matrices, the necessary and sufficient conditions for the solvability and the general expression of the solution are obtained. Moreover, the related optimal approximation problem to a given matrix over the solution set is solved. 展开更多
关键词 matrix equations generalized reflexive matrix optimal approximation
下载PDF
Degree of Approximation of Conjugate of Signals (Functions) by Lower Triangular Matrix Operator 被引量:1
2
作者 Vishnu Narayan Mishra Huzoor H. Khan Kejal Khatri 《Applied Mathematics》 2011年第12期1448-1452,共5页
In the present paper, an attempt is made to obtain the degree of approximation of conjugate of functions (signals) belonging to the generalized weighted W(LP, ξ(t)), (p ≥ 1)-class, by using lower triangular matrix o... In the present paper, an attempt is made to obtain the degree of approximation of conjugate of functions (signals) belonging to the generalized weighted W(LP, ξ(t)), (p ≥ 1)-class, by using lower triangular matrix operator of conjugate series of its Fourier series. 展开更多
关键词 CONJUGATE FOURIER Series generalized Weighted W(LP ξ(t))-Class Degree of approximation and LOWER TRIANGULAR matrix Means
下载PDF
Least-Squares Solutions of the Matrix Equation A^TXA=B Over Bisymmetric Matrices and its Optimal Approximation 被引量:1
3
作者 Yanyan Zhang Yuan Lei Anping Liao 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2007年第3期215-225,共11页
A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular val... A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular value decomposition,a method useful for finding the least-squares solutions of the matrix equation A^TXA=B over bisymmetric matrices is proposed.The expression of the least-squares solutions is given.Moreover, in the corresponding solution set,the optimal approximate solution to a given matrix is also derived.A numerical algorithm for finding the optimal approximate solution is also described. 展开更多
关键词 轴对称矩阵 矩阵方程 典型相关分解 最小二乘法 最佳逼近
下载PDF
Truncated sparse approximation property and truncated q-norm minimization 被引量:1
4
作者 CHEN Wen-gu LI Peng 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2019年第3期261-283,共23页
This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation p... This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk. 展开更多
关键词 TRUNCATED NORM MINIMIZATION TRUNCATED SPARSE approximation PROPERTY restricted isometry PROPERTY SPARSE signal RECOVERY low-rank matrix RECOVERY Dantzig selector
下载PDF
Randomized Generalized Singular Value Decomposition 被引量:1
5
作者 Wei Wei Hui Zhang +1 位作者 Xi Yang Xiaoping Chen 《Communications on Applied Mathematics and Computation》 2021年第1期137-156,共20页
The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memo... The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memory requirement when the scale of the matrices is quite large.In this paper,we use random projections to capture the most of the action of the matrices and propose randomized algorithms for computing a low-rank approximation of the GSVD.Serval error bounds of the approximation are also presented for the proposed randomized algorithms.Finally,some experimental results show that the proposed randomized algorithms can achieve a good accuracy with less computational cost and storage requirement. 展开更多
关键词 generalized singular value decomposition Randomized algorithm low-rank approximation Error analysis
下载PDF
Generalized Inverse Eigenvalue Problem for Centrohermitian Matrices
6
作者 刘仲云 谭艳祥 田兆录 《Journal of Shanghai University(English Edition)》 CAS 2004年第4期448-454,共7页
In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of co... In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it. 展开更多
关键词 centrohermitian matrix generalized inverse eigenvalue problem optimal approximation.
下载PDF
Solvability conditions for algebra inverse eigenvalue problem over set of anti-Hermitian generalized anti-Hamiltonian matrices
7
作者 ZHANG Zhong-zhi HAN Xu-li 《Journal of Central South University of Technology》 2005年第z1期294-297,共4页
By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-H... By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction. 展开更多
关键词 anti-Hermitian generalized anti-Hamiltonian matrix ALGEBRA INVERSE EIGENVALUE problem optimal approximation
下载PDF
Low-Rank Positive Approximants of Symmetric Matrices
8
作者 Achiya Dax 《Advances in Linear Algebra & Matrix Theory》 2014年第3期172-185,共14页
Given a symmetric matrix X, we consider the problem of finding a low-rank positive approximant of X. That is, a symmetric positive semidefinite matrix, S, whose rank is smaller than a given positive integer, , which i... Given a symmetric matrix X, we consider the problem of finding a low-rank positive approximant of X. That is, a symmetric positive semidefinite matrix, S, whose rank is smaller than a given positive integer, , which is nearest to X in a certain matrix norm. The problem is first solved with regard to four common norms: The Frobenius norm, the Schatten p-norm, the trace norm, and the spectral norm. Then the solution is extended to any unitarily invariant matrix norm. The proof is based on a subtle combination of Ky Fan dominance theorem, a modified pinching principle, and Mirsky minimum-norm theorem. 展开更多
关键词 low-rank POSITIVE approximANTS Unitarily INVARIANT matrix Norms
下载PDF
Low-rank matrix recovery with total generalized variation for defending adversarial examples
9
作者 Wen LI Hengyou WANG +4 位作者 Lianzhi HUO Qiang HE Linlin CHEN Zhiquan HE Wing W.Y.Ng 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第3期432-445,共14页
Low-rank matrix decomposition with first-order total variation(TV)regularization exhibits excellent performance in exploration of image structure.Taking advantage of its excellent performance in image denoising,we app... Low-rank matrix decomposition with first-order total variation(TV)regularization exhibits excellent performance in exploration of image structure.Taking advantage of its excellent performance in image denoising,we apply it to improve the robustness of deep neural networks.However,although TV regularization can improve the robustness of the model,it reduces the accuracy of normal samples due to its over-smoothing.In our work,we develop a new low-rank matrix recovery model,called LRTGV,which incorporates total generalized variation(TGV)regularization into the reweighted low-rank matrix recovery model.In the proposed model,TGV is used to better reconstruct texture information without over-smoothing.The reweighted nuclear norm and Li-norm can enhance the global structure information.Thus,the proposed LRTGV can destroy the structure of adversarial noise while re-enhancing the global structure and local texture of the image.To solve the challenging optimal model issue,we propose an algorithm based on the alternating direction method of multipliers.Experimental results show that the proposed algorithm has a certain defense capability against black-box attacks,and outperforms state-of-the-art low-rank matrix recovery methods in image restoration. 展开更多
关键词 Total generalized variation low-rank matrix Alternating direction method of multipliers Adversarial example
原文传递
Continued Fraction Algorithm for Matrix Exponentials
10
作者 GU Chuan qing Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200436, China 《Journal of Shanghai University(English Edition)》 CAS 2001年第1期11-14,共4页
A recursive rational algorithm for matrix exponentials was obtained by making use of the generalized inverse of a matrix in this paper. On the basis of the n th convergence of Thiele type continued fraction expa... A recursive rational algorithm for matrix exponentials was obtained by making use of the generalized inverse of a matrix in this paper. On the basis of the n th convergence of Thiele type continued fraction expansion, a new type of the generalized inverse matrix valued Padé approximant (GMPA) for matrix exponentials was defined and its remainder formula was proved. The results of this paper were illustrated by some examples. 展开更多
关键词 matrix exponentials generalized inverse continued fraction algorithm Padé approximant
下载PDF
Linear low-rank approximation and nonlinear dimensionality reduction 被引量:2
11
作者 ZHANG Zhenyue & ZHA Hongyuan Department of Mathematics, Zhejiang University, Yuquan Campus, Hangzhou 310027, China Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, U.S.A. 《Science China Mathematics》 SCIE 2004年第6期908-920,共13页
We present our recent work on both linear and nonlinear data reduction methods and algorithms: for the linear case we discuss results on structure analysis of SVD of columnpartitioned matrices and sparse low-rank appr... We present our recent work on both linear and nonlinear data reduction methods and algorithms: for the linear case we discuss results on structure analysis of SVD of columnpartitioned matrices and sparse low-rank approximation; for the nonlinear case we investigate methods for nonlinear dimensionality reduction and manifold learning. The problems we address have attracted great deal of interest in data mining and machine learning. 展开更多
关键词 singular value decomposition low-rank approximation sparse matrix nonlinear dimensionality reduction principal manifold subspace alignment data mining
原文传递
基于广义逆矩阵的Bézier曲线降阶逼近 被引量:32
12
作者 陈国栋 王国瑾 《软件学报》 EI CSCD 北大核心 2001年第3期435-439,共5页
研究了 Bézier曲线的降多阶逼近问题 .利用 Bézier曲线本身的升阶性质 ,并结合广义逆矩阵的最小二乘理论 ,给出了一种新的降阶逼近方法 .此方法克服了一般降阶方法中每次只能降阶一次的弱点 ,并且得到了很好的逼近效果 .
关键词 降多阶 广义逆矩阵 逼近 BEZIER曲线 几何造型 计算机辅助设计 CAD CAM
下载PDF
线性流形上反埃尔米特广义汉密尔顿矩阵的最小二乘问题与最佳逼近问题 被引量:8
13
作者 张忠志 胡锡炎 张磊 《数学物理学报(A辑)》 CSCD 北大核心 2006年第6期978-986,共9页
利用反埃尔米特广义汉密尔顿矩阵的表示定理,得到了线性流形上反埃尔米特广义汉密尔顿矩阵反问题的最小二乘解的一般表达式,建立了线性矩阵方程在线性流形上可解的充分必要条件.对于任意给定的n阶复矩阵,证明了相关最佳逼近问题解的存... 利用反埃尔米特广义汉密尔顿矩阵的表示定理,得到了线性流形上反埃尔米特广义汉密尔顿矩阵反问题的最小二乘解的一般表达式,建立了线性矩阵方程在线性流形上可解的充分必要条件.对于任意给定的n阶复矩阵,证明了相关最佳逼近问题解的存在性与惟一性,并推得了最佳逼近解的表达式. 展开更多
关键词 反埃尔米特广义汉密尔顿矢巨阵 最小二乘解 线性流形 最佳逼近
下载PDF
优势关系下广义决策约简和上近似约简 被引量:12
14
作者 袁修久 何华灿 《计算机工程与应用》 CSCD 北大核心 2006年第5期4-7,共4页
论文定义了决策表的优势关系下广义决策约简和上近似约简,给出了优势关系下广义决策约简和上近似约简的判定定理和辨识矩阵。同计算优势关系下上近似约简的辨识矩阵相比,计算优势关系下广义决策约简的辨识矩阵的时间复杂度低,由于论文... 论文定义了决策表的优势关系下广义决策约简和上近似约简,给出了优势关系下广义决策约简和上近似约简的判定定理和辨识矩阵。同计算优势关系下上近似约简的辨识矩阵相比,计算优势关系下广义决策约简的辨识矩阵的时间复杂度低,由于论文已证明优势关系下广义决策约简和上近似约简是等价的,因此,可以利用优势关系下广义决策约简的辨识矩阵计算优势关系下广义决策约简和上近似约简。 展开更多
关键词 粗糙集 优势关系 广义决策约简 上近似约简 辨识矩阵
下载PDF
广义次对称矩阵反问题的最小二乘解 被引量:6
15
作者 肖庆丰 张忠志 顾广泽 《纯粹数学与应用数学》 CSCD 北大核心 2006年第4期560-564,共5页
讨论了广义次对称矩阵反问题的最小二乘解,得到了解的一般表达式,并就该问题的特殊情形:矩阵反问题,得到了可解的充分必要条件及解的通式.此外,证明了最佳逼近问题解的存在唯一性,并给出了其解的具体表达式.
关键词 广义反次对称矩阵 最小二乘解 最佳逼近
下载PDF
Hermite广义Hamilton矩阵反问题的最小二乘解 被引量:9
16
作者 钱爱林 柳学坤 《数学杂志》 CSCD 北大核心 2006年第5期519-523,共5页
本文研究了Hermite广义Hamilton矩阵反问题的最小二乘解,利用矩阵的奇异值分解,得到了解的表达式用Hermite广义Hamilton矩阵构造给定定矩阵的最佳逼近问题有解的条件.
关键词 Hermite广义Hamilton矩阵 矩阵范数 最佳逼近
下载PDF
线性流形上广义次对称矩阵的最佳逼近 被引量:3
17
作者 肖庆丰 刘长荣 张忠志 《工程数学学报》 CSCD 北大核心 2004年第5期732-736,共5页
讨论了线性流形上广义次对称矩阵的最小二乘解,得到了解的一般表达式,对于任意给定的实对称矩阵A,在最小二乘解集中得到了A的最佳逼近解。
关键词 线性流形 广义次对称矩阵 最佳逼近
下载PDF
自反阵的广义特征值反问题 被引量:5
18
作者 吴春红 林鹭 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第3期305-310,共6页
讨论如下广义特征值反问题;给定矩阵X,对角阵A和广义反射阵P,求自反阵A,B使得AX=BXA,给出了(A,B)的一般表达式.我们把上述问题解的全体记为SAB。然后,讨论了上述问题的最佳逼近问题:给定任意矩阵A^*,B^*,求矩阵(A^-,B^... 讨论如下广义特征值反问题;给定矩阵X,对角阵A和广义反射阵P,求自反阵A,B使得AX=BXA,给出了(A,B)的一般表达式.我们把上述问题解的全体记为SAB。然后,讨论了上述问题的最佳逼近问题:给定任意矩阵A^*,B^*,求矩阵(A^-,B^-)∈SAB,使得在F-范数意义下(A^-,B^-)为(A^*,B^*)的最佳逼近.证明了此问题有惟一解,并给出解的表达式,算法及数值例子. 展开更多
关键词 广义特征值 逆特征值问题 自反阵 最佳逼近
下载PDF
广义反自反阵的广义特征值反问题 被引量:3
19
作者 邓继恩 王海宁 崔润卿 《河南理工大学学报(自然科学版)》 CAS 2007年第3期340-344,共5页
讨论了给定矩阵X和对角阵Λ,求广义反自反矩阵广义特征值反问题AX=BXΛ的解(A,B),利用矩阵的奇异值分解和矩阵分块法,给出了其解的一般表达式.记上述问题解的集合为SAB,讨论了给定任意矩阵,,求矩阵(,)∈SAB,使得在F—范数意义下... 讨论了给定矩阵X和对角阵Λ,求广义反自反矩阵广义特征值反问题AX=BXΛ的解(A,B),利用矩阵的奇异值分解和矩阵分块法,给出了其解的一般表达式.记上述问题解的集合为SAB,讨论了给定任意矩阵,,求矩阵(,)∈SAB,使得在F—范数意义下(,)为(,)的最佳逼近问题,证明了此问题存在惟一解,并给出了解的表达式. 展开更多
关键词 广义反自反阵 广义特征值 反问题 奇异值分解 最佳逼近
下载PDF
子矩阵约束下的埃尔米特广义反汉密尔顿矩阵特征值反问题及其最佳逼近 被引量:5
20
作者 莫荣华 黎稳 《数学物理学报(A辑)》 CSCD 北大核心 2011年第3期691-701,共11页
该文研究了子矩阵约束下埃尔米特广义反汉密尔顿矩阵特征值反问题,得到了该问题解的表达式.证明了该约束下其最佳逼近解的存在性和唯一性,建立了其最佳逼近解,并给出了求最佳逼近解的数值算法和算例.
关键词 反问题 埃尔米特矩阵 广义反汉密尔顿矩阵 子矩阵约束 最佳逼近
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部