期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Deep Learning Enabled Autoencoder Architecture for Collaborative Filtering Recommendation in IoT Environment 被引量:1
1
作者 Thavavel Vaiyapuri 《Computers, Materials & Continua》 SCIE EI 2021年第7期487-503,共17页
The era of the Internet of things(IoT)has marked a continued exploration of applications and services that can make people’s lives more convenient than ever before.However,the exploration of IoT services also means t... The era of the Internet of things(IoT)has marked a continued exploration of applications and services that can make people’s lives more convenient than ever before.However,the exploration of IoT services also means that people face unprecedented difficulties in spontaneously selecting the most appropriate services.Thus,there is a paramount need for a recommendation system that can help improve the experience of the users of IoT services to ensure the best quality of service.Most of the existing techniques—including collaborative filtering(CF),which is most widely adopted when building recommendation systems—suffer from rating sparsity and cold-start problems,preventing them from providing high quality recommendations.Inspired by the great success of deep learning in a wide range of fields,this work introduces a deep-learning-enabled autoencoder architecture to overcome the setbacks of CF recommendations.The proposed deep learning model is designed as a hybrid architecture with three key networks,namely autoencoder(AE),multilayered perceptron(MLP),and generalized matrix factorization(GMF).The model employs two AE networks to learn deep latent feature representations of users and items respectively and in parallel.Next,MLP and GMF networks are employed to model the linear and non-linear user-item interactions respectively with the extracted latent user and item features.Finally,the rating prediction is performed based on the idea of ensemble learning by fusing the output of the GMF and MLP networks.We conducted extensive experiments on two benchmark datasets,MoiveLens100K and MovieLens1M,using four standard evaluation metrics.Ablation experiments were conducted to confirm the validity of the proposed model and the contribution of each of its components in achieving better recommendation performance.Comparative analyses were also carried out to demonstrate the potential of the proposed model in gaining better accuracy than the existing CF methods with resistance to rating sparsity and cold-start problems. 展开更多
关键词 Neural collaborative filtering cold-start problem data sparsity multilayer perception generalized matrix factorization autoencoder deep learning ensemble learning top-K recommendations
下载PDF
Multivariate quasi-tight framelets with high balancing orders derived from any compactly supported refinable vector functions
2
作者 Bin Han Ran Lu 《Science China Mathematics》 SCIE CSCD 2022年第1期81-110,共30页
Generalizing wavelets by adding desired redundancy and flexibility,framelets(i.e.,wavelet frames)are of interest and importance in many applications such as image processing and numerical algorithms.Several key proper... Generalizing wavelets by adding desired redundancy and flexibility,framelets(i.e.,wavelet frames)are of interest and importance in many applications such as image processing and numerical algorithms.Several key properties of framelets are high vanishing moments for sparse multiscale representation,fast framelet transforms for numerical efficiency,and redundancy for robustness.However,it is a challenging problem to study and construct multivariate nonseparable framelets,mainly due to their intrinsic connections to factorization and syzygy modules of multivariate polynomial matrices.Moreover,all the known multivariate tight framelets derived from spline refinable scalar functions have only one vanishing moment,and framelets derived from refinable vector functions are barely studied yet in the literature.In this paper,we circumvent the above difficulties through the approach of quasi-tight framelets,which behave almost identically to tight framelets.Employing the popular oblique extension principle(OEP),from an arbitrary compactly supported M-refinable vector functionφwith multiplicity greater than one,we prove that we can always derive fromφa compactly supported multivariate quasi-tight framelet such that:(i)all the framelet generators have the highest possible order of vanishing moments;(ii)its associated fast framelet transform has the highest balancing order and is compact.For a refinable scalar functionφ(i.e.,its multiplicity is one),the above item(ii)often cannot be achieved intrinsically but we show that we can always construct a compactly supported OEP-based multivariate quasi-tight framelet derived fromφsatisfying item(i).We point out that constructing OEP-based quasi-tight framelets is closely related to the generalized spectral factorization of Hermitian trigonometric polynomial matrices.Our proof is critically built on a newly developed result on the normal form of a matrix-valued filter,which is of interest and importance in itself for greatly facilitating the study of refinable vector functions and multiwavelets/multiframelets.This paper provides a comprehensive investigation on OEP-based multivariate quasi-tight multiframelets and their associated framelet transforms with high balancing orders.This deepens our theoretical understanding of multivariate quasi-tight multiframelets and their associated fast multiframelet transforms. 展开更多
关键词 quasi-tight multiframelet oblique extension principle refinable vector function vanishing moment balancing order compact framelet transform normal form of filters generalized matrix factorization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部