The downward continuation of potential fields is a process of calculating their values in a lower plane based on those of a certain plane.This technology is not only a data processing method for resource exploration b...The downward continuation of potential fields is a process of calculating their values in a lower plane based on those of a certain plane.This technology is not only a data processing method for resource exploration but also plays an extremely important role in military applications.However,the downward continuation of potential fields is a typical linear inverse problem that is ill-posed.Generalized minimal residuals(GMRES)is an eff ective solution to ill-posed inverse problems,but it is unstable under the condition wherein the GMRES is directly applied in the calculation process.Moreover,the long-term behavior of its iterative computation is a disordered,divergent result.Therefore,to obtain stable solutions,GMRES is applied to solve the normal equations of the downward continuation of potential fields;it is also used to prequalify for occasional interruptions in the operation process by adding the damping coefficient,thus strengthening the stability conditions of the equations of residual minimization.Finally,the stable downward continuation of the potential fields method is proposed.As indicated by the theoretical data and the measured testing data,the method proposed in this paper has the advantages of high-precision and excellent stability.Furthermore,compared with the Tikhonov iteration method,the proposed method avoids the need to choose regularization parameters.展开更多
Lagrangian-Eulerian formulations based on a generalized variational principle of fluid-solid coupling dynamics are established to describe flow-induced vibration of a structure under small deformation in an incompress...Lagrangian-Eulerian formulations based on a generalized variational principle of fluid-solid coupling dynamics are established to describe flow-induced vibration of a structure under small deformation in an incompressible viscous fluid flow. The spatial discretization of the formulations is based on the multi-linear interpolating functions by using the finite element method for both the fluid and solid structures. The generalized trapezoidal rule is used to obtain apparently non-symmetric linear equations in an incremental form for the variables of the flow and vibration. The nonlinear convective term and time factors are contained in the non-symmetric coefficient matrix of the equations. The generalized minimum residual (GMRES) method is used to solve the incremental equations. A new stable algorithm of GMRES-Hughes-Newmark is developed to deal with the flow-induced vibration with dynamical fluid-structure interaction in complex geometries. Good agreement between the simulations and laboratory measurements of the pressure and blade vibration accelerations in a hydro turbine passage was obtained, indicating that the GiViRES-Hughes-Newmark algorithm presented in this paper is suitable for dealing with the flow-induced vibration of structures under small deformation.展开更多
This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized...This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized by the finite difference method. The resulting nonlinear system of algebraic equations is solved by the Jacobian-free Newtongeneralized minimal residual(GMRES) from the Krylov subspace method(KSM). The acceleration of the GMRES iteration is accomplished by a wavelet-based preconditioner.The profiles of the lubricant pressure and film thickness are obtained at each time step when the indented surface moves through the contact region. The prediction of pressure as a function of time provides an insight into the understanding of fatigue life of bearings.The analysis confirms the need for the time-dependent approach of EHL problems with surface asperities. This method requires less storage and yields an accurate solution with much coarser grids. It is stable, efficient, allows a larger time step, and covers a wide range of parameters of interest.展开更多
The recent result of an orbit continuation algorithm has provided a rigorous method for long-term numerical integration of an orbit on the unstable manifold of a periodic solution.This algorithm is matrix-free and emp...The recent result of an orbit continuation algorithm has provided a rigorous method for long-term numerical integration of an orbit on the unstable manifold of a periodic solution.This algorithm is matrix-free and employs a combination of the Newton-Raphson method and the Krylov subspace method.Moreover,the algorithm adopts a multiple shooting method to address the problem of orbital instability due to long-term numerical integration.The algorithm is described through computing the extension of unstable manifold of a recomputed Nagata′s lowerbranch steady solution of plane Couette flow,which is an example of an exact coherent state that has recently been studied in subcritical transition to turbulence.展开更多
基金This research is supported by the National Key Research and Development Program of China under Grant No.2018YFC1505401the Key Research and Development Projects of the Sichuan Science and Technology Department under Grant Nos.2019YFG0460,2020YFG0303,and 2021YJ0031+1 种基金the Technology Research and Development Program of China Railway Group Limited under Grant No.CZ01-Key Point-05the Fundamental Research Funds for the Central Universities under Grant No.2682021GF019.
文摘The downward continuation of potential fields is a process of calculating their values in a lower plane based on those of a certain plane.This technology is not only a data processing method for resource exploration but also plays an extremely important role in military applications.However,the downward continuation of potential fields is a typical linear inverse problem that is ill-posed.Generalized minimal residuals(GMRES)is an eff ective solution to ill-posed inverse problems,but it is unstable under the condition wherein the GMRES is directly applied in the calculation process.Moreover,the long-term behavior of its iterative computation is a disordered,divergent result.Therefore,to obtain stable solutions,GMRES is applied to solve the normal equations of the downward continuation of potential fields;it is also used to prequalify for occasional interruptions in the operation process by adding the damping coefficient,thus strengthening the stability conditions of the equations of residual minimization.Finally,the stable downward continuation of the potential fields method is proposed.As indicated by the theoretical data and the measured testing data,the method proposed in this paper has the advantages of high-precision and excellent stability.Furthermore,compared with the Tikhonov iteration method,the proposed method avoids the need to choose regularization parameters.
基金supported by the National Natural Science Foundation of China (No. 50839003)the Natural Science Foundation of Yunnan Province (No. 2008GA027)
文摘Lagrangian-Eulerian formulations based on a generalized variational principle of fluid-solid coupling dynamics are established to describe flow-induced vibration of a structure under small deformation in an incompressible viscous fluid flow. The spatial discretization of the formulations is based on the multi-linear interpolating functions by using the finite element method for both the fluid and solid structures. The generalized trapezoidal rule is used to obtain apparently non-symmetric linear equations in an incremental form for the variables of the flow and vibration. The nonlinear convective term and time factors are contained in the non-symmetric coefficient matrix of the equations. The generalized minimum residual (GMRES) method is used to solve the incremental equations. A new stable algorithm of GMRES-Hughes-Newmark is developed to deal with the flow-induced vibration with dynamical fluid-structure interaction in complex geometries. Good agreement between the simulations and laboratory measurements of the pressure and blade vibration accelerations in a hydro turbine passage was obtained, indicating that the GiViRES-Hughes-Newmark algorithm presented in this paper is suitable for dealing with the flow-induced vibration of structures under small deformation.
基金financial support from the Indian National Science Academy,New Delhi,IndiaBiluru Gurubasava Mahaswamiji Institute of Technology for the encouragement and support。
文摘This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized by the finite difference method. The resulting nonlinear system of algebraic equations is solved by the Jacobian-free Newtongeneralized minimal residual(GMRES) from the Krylov subspace method(KSM). The acceleration of the GMRES iteration is accomplished by a wavelet-based preconditioner.The profiles of the lubricant pressure and film thickness are obtained at each time step when the indented surface moves through the contact region. The prediction of pressure as a function of time provides an insight into the understanding of fatigue life of bearings.The analysis confirms the need for the time-dependent approach of EHL problems with surface asperities. This method requires less storage and yields an accurate solution with much coarser grids. It is stable, efficient, allows a larger time step, and covers a wide range of parameters of interest.
文摘The recent result of an orbit continuation algorithm has provided a rigorous method for long-term numerical integration of an orbit on the unstable manifold of a periodic solution.This algorithm is matrix-free and employs a combination of the Newton-Raphson method and the Krylov subspace method.Moreover,the algorithm adopts a multiple shooting method to address the problem of orbital instability due to long-term numerical integration.The algorithm is described through computing the extension of unstable manifold of a recomputed Nagata′s lowerbranch steady solution of plane Couette flow,which is an example of an exact coherent state that has recently been studied in subcritical transition to turbulence.