To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm,this paper presents a new algorithm based on multi-strategy(ISMO).First,the initial populatio...To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm,this paper presents a new algorithm based on multi-strategy(ISMO).First,the initial population is generated by a refracted opposition-based learning strategy to enhance diversity and ergodicity.Second,this paper introduces a non-linear adaptive dynamic weight factor to improve convergence efficiency.Then,using the crisscross strategy,using the horizontal crossover to enhance the global search and vertical crossover to keep the diversity of the population to avoid being trapped in the local optimum.At last,we adopt a Gauss-Cauchy mutation strategy to improve the stability of the algorithm by mutation of the optimal individuals.Therefore,the application of ISMO is validated by ten benchmark functions and feature selection.It is proved that the proposed method can resolve the problem of feature selection.展开更多
为了提高效率,降低培训成本并推广使用计算机来取代管制模拟机中的飞行员席位,采用集成学习的策略来生成飞行员复诵指令。选用5个大规模预训练语言模型进行微调,并使用K折交叉验证来筛选出性能较好的4个模型作为基础模型来构建集成学习...为了提高效率,降低培训成本并推广使用计算机来取代管制模拟机中的飞行员席位,采用集成学习的策略来生成飞行员复诵指令。选用5个大规模预训练语言模型进行微调,并使用K折交叉验证来筛选出性能较好的4个模型作为基础模型来构建集成学习模型。所构建的集成学习模型在管制指令数据集上取得在本领域中的最优效果。在通用的ROUGE(recall-oriented understudy for gisting evaluation)评价标准中,取得R_(OUGE-1)=0.998,R_(OUGE-2)=0.995,R_(OUGE-L)=0.998的最新效果。其中,R_(OUGE-1)关注参考文本与生成文本之间单个单词的匹配度,R_(OUGE-2)则关注两个连续单词的匹配度,R_(OUGE-L)则关注最长公共子序列的匹配度。为了克服通用指标在本领域的局限性,更准确地评估模型性能,针对生成的复诵指令提出一套基于关键词的评价标准。该评价指标准基于管制文本分词后的结果计算各个关键词指标来评估模型的效果。在基于关键词的评价标准下,所构建模型取得整体准确率为0.987的最优效果,对航空器呼号的复诵准确率达到0.998。展开更多
针对新能源出力的强随机性、间歇性影响配电网功率平衡问题,提出了一种融合多步贪婪策略改进的深度双Q网络(double deep Q network,DDQN)算法和一致性算法的双层功率分配策略,该方法在源荷波动情况下可自适应调整配电网各机组出力,保证...针对新能源出力的强随机性、间歇性影响配电网功率平衡问题,提出了一种融合多步贪婪策略改进的深度双Q网络(double deep Q network,DDQN)算法和一致性算法的双层功率分配策略,该方法在源荷波动情况下可自适应调整配电网各机组出力,保证功率调节的快速性和经济性。首先,基于“资源集群”的划分提出了分层分布式功率分配框架,将智能配电网功率分配问题分解为协调调度层和自治层功率优化分配模型进行求解。然后,协调调度层采用多步贪婪策略改进的DDQN算法来实现“资源集群”间的功率分配,自治层提出以成本微增量为一致性状态变量的功率动态分配方法。最后,典型智能配电网算例仿真结果表明,所提的双层功率分配策略能够在新能源波动情况下解决功率的优化分配问题;与多种方法相比,所提方法具有较快的收敛速度和较低的调节成本。展开更多
In the original Moth-Flame Optimization(MFO),the search behavior of the moth depends on the corresponding flame and the interaction between the moth and its corresponding flame,so it will get stuck in the local optimu...In the original Moth-Flame Optimization(MFO),the search behavior of the moth depends on the corresponding flame and the interaction between the moth and its corresponding flame,so it will get stuck in the local optimum easily when facing the multi-dimensional and high-dimensional optimization problems.Therefore,in this work,a generalized oppositional MFO with crossover strategy,named GCMFO,is presented to overcome the mentioned defects.In the proposed GCMFO,GOBL is employed to increase the population diversity and expand the search range in the initialization and iteration jump phase based on the jump rate;crisscross search(CC)is adopted to promote the exploitation and/or exploration ability of MFO.The proposed algorithm’s performance is estimated by organizing a series of experiments;firstly,the CEC2017 benchmark set is adopted to evaluate the performance of GCMFO in tackling high-dimensional and multimodal problems.Secondly,GCMFO is applied to handle multilevel thresholding image segmentation problems.At last,GCMFO is integrated into kernel extreme learning machine classifier to deal with three medical diagnosis cases,including the appendicitis diagnosis,overweight statuses diagnosis,and thyroid cancer diagnosis.Experimental results and discussions show that the proposed approach outperforms the original MFO and other state-of-the-art algorithms on both convergence speed and accuracy.It also indicates that the presented GCMFO has a promising potential for application.展开更多
文摘To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm,this paper presents a new algorithm based on multi-strategy(ISMO).First,the initial population is generated by a refracted opposition-based learning strategy to enhance diversity and ergodicity.Second,this paper introduces a non-linear adaptive dynamic weight factor to improve convergence efficiency.Then,using the crisscross strategy,using the horizontal crossover to enhance the global search and vertical crossover to keep the diversity of the population to avoid being trapped in the local optimum.At last,we adopt a Gauss-Cauchy mutation strategy to improve the stability of the algorithm by mutation of the optimal individuals.Therefore,the application of ISMO is validated by ten benchmark functions and feature selection.It is proved that the proposed method can resolve the problem of feature selection.
文摘为了提高效率,降低培训成本并推广使用计算机来取代管制模拟机中的飞行员席位,采用集成学习的策略来生成飞行员复诵指令。选用5个大规模预训练语言模型进行微调,并使用K折交叉验证来筛选出性能较好的4个模型作为基础模型来构建集成学习模型。所构建的集成学习模型在管制指令数据集上取得在本领域中的最优效果。在通用的ROUGE(recall-oriented understudy for gisting evaluation)评价标准中,取得R_(OUGE-1)=0.998,R_(OUGE-2)=0.995,R_(OUGE-L)=0.998的最新效果。其中,R_(OUGE-1)关注参考文本与生成文本之间单个单词的匹配度,R_(OUGE-2)则关注两个连续单词的匹配度,R_(OUGE-L)则关注最长公共子序列的匹配度。为了克服通用指标在本领域的局限性,更准确地评估模型性能,针对生成的复诵指令提出一套基于关键词的评价标准。该评价指标准基于管制文本分词后的结果计算各个关键词指标来评估模型的效果。在基于关键词的评价标准下,所构建模型取得整体准确率为0.987的最优效果,对航空器呼号的复诵准确率达到0.998。
文摘针对新能源出力的强随机性、间歇性影响配电网功率平衡问题,提出了一种融合多步贪婪策略改进的深度双Q网络(double deep Q network,DDQN)算法和一致性算法的双层功率分配策略,该方法在源荷波动情况下可自适应调整配电网各机组出力,保证功率调节的快速性和经济性。首先,基于“资源集群”的划分提出了分层分布式功率分配框架,将智能配电网功率分配问题分解为协调调度层和自治层功率优化分配模型进行求解。然后,协调调度层采用多步贪婪策略改进的DDQN算法来实现“资源集群”间的功率分配,自治层提出以成本微增量为一致性状态变量的功率动态分配方法。最后,典型智能配电网算例仿真结果表明,所提的双层功率分配策略能够在新能源波动情况下解决功率的优化分配问题;与多种方法相比,所提方法具有较快的收敛速度和较低的调节成本。
基金This research is supported by the National Natural Science Foundation of China(62076185,U1809209)Zhejiang Provincial Natural Science Foundation of China(LY21F020030)+2 种基金Wenzhou Science&Technology Bureau(2018ZG016)Taif University Researchers Supporting Project Number(TURSP-2020/125)Taif University,Taif,Saudi Arabia。
文摘In the original Moth-Flame Optimization(MFO),the search behavior of the moth depends on the corresponding flame and the interaction between the moth and its corresponding flame,so it will get stuck in the local optimum easily when facing the multi-dimensional and high-dimensional optimization problems.Therefore,in this work,a generalized oppositional MFO with crossover strategy,named GCMFO,is presented to overcome the mentioned defects.In the proposed GCMFO,GOBL is employed to increase the population diversity and expand the search range in the initialization and iteration jump phase based on the jump rate;crisscross search(CC)is adopted to promote the exploitation and/or exploration ability of MFO.The proposed algorithm’s performance is estimated by organizing a series of experiments;firstly,the CEC2017 benchmark set is adopted to evaluate the performance of GCMFO in tackling high-dimensional and multimodal problems.Secondly,GCMFO is applied to handle multilevel thresholding image segmentation problems.At last,GCMFO is integrated into kernel extreme learning machine classifier to deal with three medical diagnosis cases,including the appendicitis diagnosis,overweight statuses diagnosis,and thyroid cancer diagnosis.Experimental results and discussions show that the proposed approach outperforms the original MFO and other state-of-the-art algorithms on both convergence speed and accuracy.It also indicates that the presented GCMFO has a promising potential for application.