The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are ...The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are approximately equal to the Planck length. In this context, we have introduced a model that utilizes a combination of Schwarzschild’s radius and Compton length to quantify the gravitational length of an object. This model has provided a novel perspective in generalizing the uncertainty principle. Furthermore, it has elucidated the significance of the deforming linear parameter β and its range of variation from unity to its maximum value.展开更多
In this paper,we establish a large deviation principle for the stochastic generalized Ginzburg-Landau equation driven by jump noise.The main difficulties come from the highly non-linear coefficient and the jump noise....In this paper,we establish a large deviation principle for the stochastic generalized Ginzburg-Landau equation driven by jump noise.The main difficulties come from the highly non-linear coefficient and the jump noise.Here,we adopt a new sufficient condition for the weak convergence criterion of the large deviation principle,which was initially proposed by Matoussi,Sabbagh and Zhang(2021).展开更多
We prove the existence of an analogy between spatial long-range interactions,which are of the convolution-type introduced in non-relativistic quantum mechanics,and the generalized uncertainty principle predicted from ...We prove the existence of an analogy between spatial long-range interactions,which are of the convolution-type introduced in non-relativistic quantum mechanics,and the generalized uncertainty principle predicted from quantum gravity theories.As an illustration,black hole temperature effects are discussed.It is observed that for specific choices of the moment's kernels,cold black holes may emerge in the theory.展开更多
The Hamilton principle is a variation principle describing the isolated and conservative systems, its Lagrange function is the difference between kinetic energy and potential energy. By Feynman path integration, we ca...The Hamilton principle is a variation principle describing the isolated and conservative systems, its Lagrange function is the difference between kinetic energy and potential energy. By Feynman path integration, we can obtain the standard Schrodinger equation. In this paper, we have given the generalized Hamilton principle, which can describe the heat exchange system, and the nonconservative force system. On this basis, we have further given their generalized Lagrange functions and Hamilton functions. With the Feynman path integration, we have given the generalized Schrodinger equation of nonconservative force system and the heat exchange system.展开更多
This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engin...The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.展开更多
The main objective of this paper is to demonstrate that the internal processes of Self-Organizing Systems represent a unique and singular process, characterized by their specific generativity. This process can be mode...The main objective of this paper is to demonstrate that the internal processes of Self-Organizing Systems represent a unique and singular process, characterized by their specific generativity. This process can be modeled using the Maximum Ordinality Principle and its associated formal language, known as the “Incipient” Differential Calculus (IDC).展开更多
Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational pr...Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational principles with multi-variables without arty variational crisis phenomenon. The method is to construct an energy trial-functional with an unknown function F, which can be readily identified by making the trial-functional stationary and using known constraint equations. As a result generalized variational principles with two kinds of independent variables (such as well-known Hellinger-Reissner variational principle and Hu-Washizu principle) and generalized variational principles with three kinds of independent variables (such as Chien's generalized variational principles) in elasticity have been deduced without using Lagrange multiplier method. By semi-inverse method, the author has also proved that Hu-Washizu principle is actually a variational principle with only two kinds of independent variables, stress-strain relations are still its constraints.展开更多
From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given....From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given. By using the variational integral method, the convolution-type functional was given and the corresponding generalized variational principles and potential energy principle of viscoelastic solids with voids were presented. It can be shown that the variational principles correspond to the differential equations and the initial and boundary conditions of viscoelastic body with voids. As an application, a generalized variational principle of viscoelastic Timoshenko beams with damage was obtained which corresponds to the differential equations of generalized motion and the initial and boundary conditions of beams. The variational principles provide a way for solving problems of viscoelastic solids with voids.展开更多
From the constitutive model with generalized force fields for a viscoelastic body with damage, the differential equations of motion for thin and thick plates with damage are derived under arbitrary boundary conditions...From the constitutive model with generalized force fields for a viscoelastic body with damage, the differential equations of motion for thin and thick plates with damage are derived under arbitrary boundary conditions. The convolution-type functionals for the bending of viscoelastic thin and thick plates with damage are presented, and the corresponding generalized variational principles are given. From these generalized principles, all the basic equations of the displacement and damage variables and initial and boundary conditions can be deduced. As an example, we compare the difference between the dynamical properties of plates with and without damage and consider the effect of damage on the dynamical properties of plates.展开更多
This paper summarized the recent development on Herglotz’s generalized variational principle and its symmetries and conserved quantities for nonconservative dynamical systems.Taking Lagrangian mechanics,Hamiltonian m...This paper summarized the recent development on Herglotz’s generalized variational principle and its symmetries and conserved quantities for nonconservative dynamical systems.Taking Lagrangian mechanics,Hamiltonian mechanics and Birkhoffian mechanics as three research frames,we introduce Herglotz’s generalized variational principle,dynamical equations of Herglotz type,Noether symmetry and conserved quantities,and their generalization to time-delay dynamics,fractional dynamics and time-scale dynamics,and put forward some problems as suggestions for future research.展开更多
We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for t...We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for the (112) (111) and / 101) ( 1 1 1) systems. Because of the anisotropy of the single crystal, the addition of interstitials tends to promote the strength of Ni by slipping along the (10T) direction while facilitating plastic deformation by slipping along the (115) direction. There is a different impact on the mechanical behavior of Ni when the interstitials are located in the slip plane. The evaluation of the Rice criterion reveals that the addition of the interstitials H and O increases the brittleness in Ni and promotes the probability of cleavage fracture, while the addition of S and N tends to increase the ductility. Besides, P, H, and S have a negligible effect on the deformation tendency in Ni, while the tendency of partial dislocation is more prominent with the addition of N and O. The addition of interstitial atoms tends to increase the high-energy barrier γmax, thereby the second partial resulting from the dislocation tends to reside and move on to the next layer.展开更多
An expression of the generalized principle of virtual work for the boundary value problem of the linear and anisotropic electromagnetic field is given. Using Chien's method, a pair of generalized variational principl...An expression of the generalized principle of virtual work for the boundary value problem of the linear and anisotropic electromagnetic field is given. Using Chien's method, a pair of generalized variational principles (GVPs) are established, which directly leads to all four Maxwell's equations, two intensity-potential equations, two constitutive equations, and eight boundary conditions. A family of constrained variational principles is derived sequentially. As additional verifications, two degenerated forms are obtained, equivalent to two known variational principles. Two modified GVPs are given to provide the hybrid finite element models for the present problem.展开更多
After considering the generalized uncertainty principle, we discuss the quantum tunneling radiation of a fivedimensional Sehwarzschild anti de Sitter black hole. The radiation spectrum and the correction value of the ...After considering the generalized uncertainty principle, we discuss the quantum tunneling radiation of a fivedimensional Sehwarzschild anti de Sitter black hole. The radiation spectrum and the correction value of the Bekenstein-- Hawking entropy are derived. In a five-dimensional black hole the one order correction term in the Bekenstein-Hawking entropy correction term is proportional to the third power of the area, and the logarithmic correction term is a twoorder small quantity. The correction term is related to the dimension constant introduced in the generalized uncertainty principle. Because the black hole entropy is not divergent, the lowest value of the five-dimensional Schwarzschild anti de Sitter black hole horizon radius is obtained. After considering the generalized uncertainty principle, the radiation spectrum is still consistent with normalization theory.展开更多
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein- Hawking black hole entropy. The different correction leading terms are obtained by the different methods. In this...Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein- Hawking black hole entropy. The different correction leading terms are obtained by the different methods. In this paper, we calculate the correction to SAdS5 black hole thermodynamic quantity due to the generalized uncertainty principle. Furthermore we derive that the black hole entropy obeys Bekenstein Hawking area theorem. The entropy has infinite correction terms. And every term is finite and calculable. The corrected Cardy-Vedinde formula is derived. In our calculation, Bekenstein Hawking area theorem still holds after considering the generalized uncertainty principle. We have not introduced any hypothesis. The calculation is simple. Physics meaning is clear. We note that our results are quite general. It is not only valid for four-dimensional spacetime but also for higher-dimensional SAdS spacetime.展开更多
In this paper, the variational principles of hydrodynamic problems for the incompressible and compressible viscous fluids are established. These principles are principles of maximum power losses. Their generalized var...In this paper, the variational principles of hydrodynamic problems for the incompressible and compressible viscous fluids are established. These principles are principles of maximum power losses. Their generalized variational principles are also discussed on the basis of Lagrangian multiplier methods.展开更多
The difference of constitutive character and large deformation as to soil mass are basic questions to analyze deformational feature. According to the description method of limited deformation, the large deformation co...The difference of constitutive character and large deformation as to soil mass are basic questions to analyze deformational feature. According to the description method of limited deformation, the large deformation consolidation equations of soil mass were created and its variational principles were rigorously testified. The regionwise variational principles of consolidation theory were deduced using sub-structure continuous condition of region-wise. Quoting the method of Lagrangian multiplier operator, generalized variational principles of region-wise of large deformation consolidation in the nonconstrained condition were created and approved.展开更多
The relations of all generalized variational principles in elasticity are studied by employing the invariance theorem of field theory. The infinitesimal scale transformation in field theory was employed to investigate...The relations of all generalized variational principles in elasticity are studied by employing the invariance theorem of field theory. The infinitesimal scale transformation in field theory was employed to investigate the equivalent theorem. Among the results found particularly interesting are those related to that all generalized variational principles in elasticity are equal to each other. Also studied result is that only two variables are independent in the functional and the stress-strain relation is the variational constraint condition for all generalized variational principles in elasticity. This work has proven again the conclusion of Prof. Chien Wei-zang.展开更多
The aim of this paper is to establish new principles of power and energy rate of incremental type in generalized continuum mechanics BY combining new principles of virtual velocity and virtual angular velocity as well...The aim of this paper is to establish new principles of power and energy rate of incremental type in generalized continuum mechanics BY combining new principles of virtual velocity and virtual angular velocity as well as of virtual stress anti virtual couple stress with c ross terms of incremental rate type a new principle of power anti energy rate of incremental rate type with cross terms for micropolar continuum field theories is presented and from it all corresponding equations of motion and boundary conditions as well as power and energy rate equations of incremental rate type for micropolar and nonlocal micropolar continua with the help of generalized Piola's theorems in all and without any additional requirement are derived. Complete results for micromorphic continua could be similarly derived. The derived results in the present paper are believed to be new. They could be used to establish corresponding finite element methods of incremental rate type for generalized continuum mechanics.展开更多
Naturally curved and twisted closed thin-walled slender beams of composite material undergoing small strains, large displacements and rotations have been investigated, and an incomplete generalized variational functio...Naturally curved and twisted closed thin-walled slender beams of composite material undergoing small strains, large displacements and rotations have been investigated, and an incomplete generalized variational function on theory of elasticity with finite displacement is established far these beams with complete constrained boundaries at two ends. The balance equations as well as all boundary conditions concerned have been deduced from functional stationary value condition. The above-mentioned method can also be extended to other various incomplete constrained boundaries conveniently. In addition, the fundamental equations and concerned formulas in the small displacement theory of the beams can be derived by using above results.展开更多
文摘The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are approximately equal to the Planck length. In this context, we have introduced a model that utilizes a combination of Schwarzschild’s radius and Compton length to quantify the gravitational length of an object. This model has provided a novel perspective in generalizing the uncertainty principle. Furthermore, it has elucidated the significance of the deforming linear parameter β and its range of variation from unity to its maximum value.
基金partially supported by the National Natural Science Foundation of China(11871382,12071361)partially supported by the National Natural Science Foundation of China(11971361,11731012)。
文摘In this paper,we establish a large deviation principle for the stochastic generalized Ginzburg-Landau equation driven by jump noise.The main difficulties come from the highly non-linear coefficient and the jump noise.Here,we adopt a new sufficient condition for the weak convergence criterion of the large deviation principle,which was initially proposed by Matoussi,Sabbagh and Zhang(2021).
文摘We prove the existence of an analogy between spatial long-range interactions,which are of the convolution-type introduced in non-relativistic quantum mechanics,and the generalized uncertainty principle predicted from quantum gravity theories.As an illustration,black hole temperature effects are discussed.It is observed that for specific choices of the moment's kernels,cold black holes may emerge in the theory.
文摘The Hamilton principle is a variation principle describing the isolated and conservative systems, its Lagrange function is the difference between kinetic energy and potential energy. By Feynman path integration, we can obtain the standard Schrodinger equation. In this paper, we have given the generalized Hamilton principle, which can describe the heat exchange system, and the nonconservative force system. On this basis, we have further given their generalized Lagrange functions and Hamilton functions. With the Feynman path integration, we have given the generalized Schrodinger equation of nonconservative force system and the heat exchange system.
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
基金Supported by the National Natural Science Foundation under Grant No.10272034the Doctoral Education Foundation under Grant No.20060217020
文摘The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.
文摘The main objective of this paper is to demonstrate that the internal processes of Self-Organizing Systems represent a unique and singular process, characterized by their specific generativity. This process can be modeled using the Maximum Ordinality Principle and its associated formal language, known as the “Incipient” Differential Calculus (IDC).
文摘Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational principles with multi-variables without arty variational crisis phenomenon. The method is to construct an energy trial-functional with an unknown function F, which can be readily identified by making the trial-functional stationary and using known constraint equations. As a result generalized variational principles with two kinds of independent variables (such as well-known Hellinger-Reissner variational principle and Hu-Washizu principle) and generalized variational principles with three kinds of independent variables (such as Chien's generalized variational principles) in elasticity have been deduced without using Lagrange multiplier method. By semi-inverse method, the author has also proved that Hu-Washizu principle is actually a variational principle with only two kinds of independent variables, stress-strain relations are still its constraints.
文摘From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given. By using the variational integral method, the convolution-type functional was given and the corresponding generalized variational principles and potential energy principle of viscoelastic solids with voids were presented. It can be shown that the variational principles correspond to the differential equations and the initial and boundary conditions of viscoelastic body with voids. As an application, a generalized variational principle of viscoelastic Timoshenko beams with damage was obtained which corresponds to the differential equations of generalized motion and the initial and boundary conditions of beams. The variational principles provide a way for solving problems of viscoelastic solids with voids.
基金Project supported by the National Natural Sciences Foundation of China (No. 10272069) the Shanghai Key Subject Program.
文摘From the constitutive model with generalized force fields for a viscoelastic body with damage, the differential equations of motion for thin and thick plates with damage are derived under arbitrary boundary conditions. The convolution-type functionals for the bending of viscoelastic thin and thick plates with damage are presented, and the corresponding generalized variational principles are given. From these generalized principles, all the basic equations of the displacement and damage variables and initial and boundary conditions can be deduced. As an example, we compare the difference between the dynamical properties of plates with and without damage and consider the effect of damage on the dynamical properties of plates.
基金supported by the National Natural Science Foundations of China (Nos. 11972241,11572212,11272227)the Natural Science Foundation of Jiangsu Province(No. BK20191454).
文摘This paper summarized the recent development on Herglotz’s generalized variational principle and its symmetries and conserved quantities for nonconservative dynamical systems.Taking Lagrangian mechanics,Hamiltonian mechanics and Birkhoffian mechanics as three research frames,we introduce Herglotz’s generalized variational principle,dynamical equations of Herglotz type,Noether symmetry and conserved quantities,and their generalization to time-delay dynamics,fractional dynamics and time-scale dynamics,and put forward some problems as suggestions for future research.
基金supported by the National Natural Science Foundation of China(Grant No 51371123)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.2013140211003)+1 种基金the Natural Science Foundation of Shanxi Science Technological Commission,China(Grant No.2014011002)the Scientific and Technological Research Program of Chongqing Municipal Education Commission,China(Grant No.KJ131315)
文摘We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for the (112) (111) and / 101) ( 1 1 1) systems. Because of the anisotropy of the single crystal, the addition of interstitials tends to promote the strength of Ni by slipping along the (10T) direction while facilitating plastic deformation by slipping along the (115) direction. There is a different impact on the mechanical behavior of Ni when the interstitials are located in the slip plane. The evaluation of the Rice criterion reveals that the addition of the interstitials H and O increases the brittleness in Ni and promotes the probability of cleavage fracture, while the addition of S and N tends to increase the ductility. Besides, P, H, and S have a negligible effect on the deformation tendency in Ni, while the tendency of partial dislocation is more prominent with the addition of N and O. The addition of interstitial atoms tends to increase the high-energy barrier γmax, thereby the second partial resulting from the dislocation tends to reside and move on to the next layer.
基金Project supported by the National Natural Science Foundation of China (No. 60304009) and the Natural Science Foundation of Hebei Province of China (No. F2005000385)
文摘An expression of the generalized principle of virtual work for the boundary value problem of the linear and anisotropic electromagnetic field is given. Using Chien's method, a pair of generalized variational principles (GVPs) are established, which directly leads to all four Maxwell's equations, two intensity-potential equations, two constitutive equations, and eight boundary conditions. A family of constrained variational principles is derived sequentially. As additional verifications, two degenerated forms are obtained, equivalent to two known variational principles. Two modified GVPs are given to provide the hybrid finite element models for the present problem.
基金Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 2006011012)the Shanxi Datong University Doctoral Sustentation Fund, China
文摘After considering the generalized uncertainty principle, we discuss the quantum tunneling radiation of a fivedimensional Sehwarzschild anti de Sitter black hole. The radiation spectrum and the correction value of the Bekenstein-- Hawking entropy are derived. In a five-dimensional black hole the one order correction term in the Bekenstein-Hawking entropy correction term is proportional to the third power of the area, and the logarithmic correction term is a twoorder small quantity. The correction term is related to the dimension constant introduced in the generalized uncertainty principle. Because the black hole entropy is not divergent, the lowest value of the five-dimensional Schwarzschild anti de Sitter black hole horizon radius is obtained. After considering the generalized uncertainty principle, the radiation spectrum is still consistent with normalization theory.
基金Natural Science Foundation of Shanxi Province of China under Grant No.2006011012the Doctoral Sustentation Fund of Shanxi Datong University
文摘Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein- Hawking black hole entropy. The different correction leading terms are obtained by the different methods. In this paper, we calculate the correction to SAdS5 black hole thermodynamic quantity due to the generalized uncertainty principle. Furthermore we derive that the black hole entropy obeys Bekenstein Hawking area theorem. The entropy has infinite correction terms. And every term is finite and calculable. The corrected Cardy-Vedinde formula is derived. In our calculation, Bekenstein Hawking area theorem still holds after considering the generalized uncertainty principle. We have not introduced any hypothesis. The calculation is simple. Physics meaning is clear. We note that our results are quite general. It is not only valid for four-dimensional spacetime but also for higher-dimensional SAdS spacetime.
文摘In this paper, the variational principles of hydrodynamic problems for the incompressible and compressible viscous fluids are established. These principles are principles of maximum power losses. Their generalized variational principles are also discussed on the basis of Lagrangian multiplier methods.
文摘The difference of constitutive character and large deformation as to soil mass are basic questions to analyze deformational feature. According to the description method of limited deformation, the large deformation consolidation equations of soil mass were created and its variational principles were rigorously testified. The regionwise variational principles of consolidation theory were deduced using sub-structure continuous condition of region-wise. Quoting the method of Lagrangian multiplier operator, generalized variational principles of region-wise of large deformation consolidation in the nonconstrained condition were created and approved.
文摘The relations of all generalized variational principles in elasticity are studied by employing the invariance theorem of field theory. The infinitesimal scale transformation in field theory was employed to investigate the equivalent theorem. Among the results found particularly interesting are those related to that all generalized variational principles in elasticity are equal to each other. Also studied result is that only two variables are independent in the functional and the stress-strain relation is the variational constraint condition for all generalized variational principles in elasticity. This work has proven again the conclusion of Prof. Chien Wei-zang.
文摘The aim of this paper is to establish new principles of power and energy rate of incremental type in generalized continuum mechanics BY combining new principles of virtual velocity and virtual angular velocity as well as of virtual stress anti virtual couple stress with c ross terms of incremental rate type a new principle of power anti energy rate of incremental rate type with cross terms for micropolar continuum field theories is presented and from it all corresponding equations of motion and boundary conditions as well as power and energy rate equations of incremental rate type for micropolar and nonlocal micropolar continua with the help of generalized Piola's theorems in all and without any additional requirement are derived. Complete results for micromorphic continua could be similarly derived. The derived results in the present paper are believed to be new. They could be used to establish corresponding finite element methods of incremental rate type for generalized continuum mechanics.
文摘Naturally curved and twisted closed thin-walled slender beams of composite material undergoing small strains, large displacements and rotations have been investigated, and an incomplete generalized variational function on theory of elasticity with finite displacement is established far these beams with complete constrained boundaries at two ends. The balance equations as well as all boundary conditions concerned have been deduced from functional stationary value condition. The above-mentioned method can also be extended to other various incomplete constrained boundaries conveniently. In addition, the fundamental equations and concerned formulas in the small displacement theory of the beams can be derived by using above results.