期刊文献+
共找到1,605篇文章
< 1 2 81 >
每页显示 20 50 100
Optimization of Generator Based on Gaussian Process Regression Model with Conditional Likelihood Lower Bound Search
1
作者 Xiao Liu Pingting Lin +2 位作者 Fan Bu Shaoling Zhuang Shoudao Huang 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期32-42,共11页
The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regressi... The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems. 展开更多
关键词 Generator optimization Gaussian Process regression(GPR) Conditional Likelihood Lower Bound Search(CLLBS) Constraint improvement expectation(CEI) Finite element calculation
下载PDF
Revisiting Akaike’s Final Prediction Error and the Generalized Cross Validation Criteria in Regression from the Same Perspective: From Least Squares to Ridge Regression and Smoothing Splines
2
作者 Jean Raphael Ndzinga Mvondo Eugène-Patrice Ndong Nguéma 《Open Journal of Statistics》 2023年第5期694-716,共23页
In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived ... In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters. 展开更多
关键词 Linear Model Mean Squared Prediction Error Final Prediction Error generalized Cross Validation Least Squares Ridge regression
下载PDF
Electricity price forecasting using generalized regression neural network based on principal components analysis 被引量:1
3
作者 牛东晓 刘达 邢棉 《Journal of Central South University》 SCIE EI CAS 2008年第S2期316-320,共5页
A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the mai... A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the main influence on day-ahead price, avoiding the strong correlation between the input factors that might influence electricity price, such as the load of the forecasting hour, other history loads and prices, weather and temperature; then GRNN was employed to forecast electricity price according to the main information extracted by PCA. To prove the efficiency of the combined model, a case from PJM (Pennsylvania-New Jersey-Maryland) day-ahead electricity market was evaluated. Compared to back-propagation (BP) neural network and standard GRNN, the combined method reduces the mean absolute percentage error about 3%. 展开更多
关键词 ELECTRICITY PRICE forecasting generalized regression NEURAL NETWORK principal COMPONENTS analysis
下载PDF
Risk based security assessment of power system using generalized regression neural network with feature extraction 被引量:2
4
作者 M. Marsadek A. Mohamed 《Journal of Central South University》 SCIE EI CAS 2013年第2期466-479,共14页
A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural n... A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy. 展开更多
关键词 generalized regression neural network line overload low voltage principle component analysis risk index voltagecollapse
下载PDF
Height-diameter models for King Boris fir(Abies borisii regis Mattf.) and Scots pine(Pinus sylvestris L.) in Olympus and Pieria Mountains, Greece
5
作者 Dimitrios I.RAPTIS Dimitra PAPADOPOULOU +3 位作者 Angeliki PSARRA Athanasios A.FALLIAS Aristides G.TSITSANIS Vassiliki KAZANA 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1475-1490,共16页
In forest science and practice, the total tree height is one of the basic morphometric attributes at the tree level and it has been closely linked with important stand attributes. In the current research, sixteen nonl... In forest science and practice, the total tree height is one of the basic morphometric attributes at the tree level and it has been closely linked with important stand attributes. In the current research, sixteen nonlinear functions for height prediction were tested in terms of their fitting ability against samples of Abies borisii regis and Pinus sylvestris trees from mountainous forests in central Greece. The fitting procedure was based on generalized nonlinear weighted regression. At the final stage, a five-quantile nonlinear height-diameter model was developed for both species through a quantile regression approach, to estimate the entire conditional distribution of tree height, enabling the evaluation of the diameter impact at various quantiles and providing a comprehensive understanding of the proposed relationship across the distribution. The results clearly showed that employing the diameter as the sole independent variable, the 3-parameter Hossfeld function and the 2-parameter N?slund function managed to explain approximately 84.0% and 81.7% of the total height variance in the case of King Boris fir and Scots pine species, respectively. Furthermore, the models exhibited low levels of error in both cases(2.310m for the fir and 3.004m for the pine), yielding unbiased predictions for both fir(-0.002m) and pine(-0.004m). Notably, all the required assumptions for homogeneity and normality of the associated residuals were achieved through the weighting procedure, while the quantile regression approach provided additional insights into the height-diameter allometry of the specific species. The proposed models can turn into valuable tools for operational forest management planning, particularly for wood production and conservation of mountainous forest ecosystems. 展开更多
关键词 generalized nonlinear weighted regression Monte Carlo cross-validation Mountainous ecosystems Quantile regression Central greece
下载PDF
Performance Prediction of Switched Reluctance Motor using Improved Generalized Regression Neural Networks for Design Optimization 被引量:7
6
作者 Zhu Zhang Shenghua Rao Xiaoping Zhang 《CES Transactions on Electrical Machines and Systems》 2018年第4期371-376,共6页
Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of gre... Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of great importance during the optimization procedure.In this paper,an improved generalized regression neural network(GRNN)optimized by fruit fly optimization algorithm(FOA)is proposed for the modeling of SRM that represent the relationship of torque ripple and efficiency with the optimization variables,stator pole arc,rotor pole arc and rotor yoke height.Finite element parametric analysis technology is used to obtain the sample data for GRNN training and verification.Comprehensive comparisons and analysis among back propagation neural network(BPNN),radial basis function neural network(RBFNN),extreme learning machine(ELM)and GRNN is made to test the effectiveness and superiority of FOA-GRNN. 展开更多
关键词 Fruit fly optimization algorithm generalized regression neural networks switched reluctance motor
下载PDF
An Approach to Carbon Emissions Prediction Using Generalized Regression Neural Network Improved by Genetic Algorithm 被引量:1
7
作者 Zhida Guo Jingyuan Fu 《Electrical Science & Engineering》 2020年第1期4-10,共7页
The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding t... The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding to climate change policy.Through the analysis of the application of the generalized regression neural network(GRNN)in prediction,this paper improved the prediction method of GRNN.Genetic algorithm(GA)was adopted to search the optimal smooth factor as the only factor of GRNN,which was then used for prediction in GRNN.During the prediction of carbon dioxide emissions using the improved method,the increments of data were taken into account.The target values were obtained after the calculation of the predicted results.Finally,compared with the results of GRNN,the improved method realized higher prediction accuracy.It thus offers a new way of predicting total carbon dioxide emissions,and the prediction results can provide macroscopic guidance and decision-making reference for China’s environmental protection and trading of carbon emissions. 展开更多
关键词 Carbon emissions Genetic Algorithm generalized regression Neural Network Smooth Factor PREDICTION
下载PDF
SEMIPARAMETRIC REGRESSION MODELS WITH LOCALLY GENERALIZED GAUSSIAN ERROR'S STRUCTURE
8
作者 胡舒合 《Acta Mathematica Scientia》 SCIE CSCD 1998年第S1期68-77,共10页
This paper proposes parametric component and nonparametric component estimators in a semiparametric regression models based on least squares and weight function's method, their strong consistency and rib mean cons... This paper proposes parametric component and nonparametric component estimators in a semiparametric regression models based on least squares and weight function's method, their strong consistency and rib mean consistency are obtained under a locally generallied Gaussinan error's structure. Finally, the author showes that the usual weight functions based on nearest neighbor method satisfy the deigned assumptions imposed. 展开更多
关键词 Semiparametric regression Locally generalized Garussian error Strong consistency Rib mean consistency
下载PDF
Application of generalized regression neural network on fast 3D reconstruction
9
作者 Babakhani Asad 杜志江 +2 位作者 孙立宁 Kardan Reza Mianji A. Fereidoun 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第1期9-12,共4页
In robot-assisted surgery projects,researchers should be able to make fast 3D reconstruction. Usually 2D images acquired with common diagnostic equipments such as UT, CT and MRI are not enough and complete for an accu... In robot-assisted surgery projects,researchers should be able to make fast 3D reconstruction. Usually 2D images acquired with common diagnostic equipments such as UT, CT and MRI are not enough and complete for an accurate 3D reconstruction. There are some interpolation methods for approximating non value voxels which consume large execution time. A novel algorithm is introduced based on generalized regression neural network (GRNN) which can interpolate unknown voxles fast and reliable. The GRNN interpolation is used to produce new 2D images between each two succeeding ultrasonic images. It is shown that the composition of GRNN with image distance transformation can produce higher quality 3D shapes. The results of this method are compared with other interpolation methods practically. It shows this method can decrease overall time consumption on online 3D reconstruction. 展开更多
关键词 generalized regression neural network 3 D reconstruction VISUALIZATION
下载PDF
Parameters optimization for exponentially weighted moving average control chart using generalized regression neural network
10
作者 梁宗保 《Journal of Chongqing University》 CAS 2006年第3期131-136,共6页
As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was... As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was introduced for optimal design of EWMA and multivariate EWMA (MEWMA) control charts, in which the optimal parameter pair ( λ, k) or ( λ, h ) was searched by using the generalized regression neural network (GRNN). The results indicate that the optimal parameter pair can be obtained effectively by the proposed strategy for a given in-control average running length (ARLo) and shift to detect under any conditions, removing the drawback of incompleteness existing in the tables that had been reported. 展开更多
关键词 parameter optimization exponentially weighted moving average control chart generalized regression neural network
下载PDF
Modelling the impact of climate change on rangeland forage production using a generalized regression neural network:a case study in Isfahan Province,Central Iran
11
作者 Zahra JABERALANSAR Mostafa TARKESH +1 位作者 Mehdi BASSIRI Saeid POURMANAFI 《Journal of Arid Land》 SCIE CSCD 2017年第4期489-503,共15页
Monitoring of rangeland forage production at specified spatial and temporal scales is necessary for grazing management and also for implementation of rehabilitation projects in rangelands. This study focused on the ca... Monitoring of rangeland forage production at specified spatial and temporal scales is necessary for grazing management and also for implementation of rehabilitation projects in rangelands. This study focused on the capability of a generalized regression neural network(GRNN) model combined with GIS techniques to explore the impact of climate change on rangeland forage production. Specifically, a dataset of 115 monitored records of forage production were collected from 16 rangeland sites during the period 1998–2007 in Isfahan Province, Central Iran. Neural network models were designed using the monitored forage production values and available environmental data(including climate and topography data), and the performance of each network model was assessed using the mean estimation error(MEE), model efficiency factor(MEF), and correlation coefficient(r). The best neural network model was then selected and further applied to predict the forage production of rangelands in the future(in 2030 and 2080) under A1 B climate change scenario using Hadley Centre coupled model. The present and future forage production maps were also produced. Rangeland forage production exhibited strong correlations with environmental factors, such as slope, elevation, aspect and annual temperature. The present forage production in the study area varied from 25.6 to 574.1 kg/hm^2. Under climate change scenario, the annual temperature was predicted to increase and the annual precipitation was predicted to decrease. The prediction maps of forage production in the future indicated that the area with low level of forage production(0–100 kg/hm^2) will increase while the areas with moderate, moderately high and high levels of forage production(≥100 kg/hm^2) will decrease both in 2030 and in 2080, which may be attributable to the increasing annual temperature and decreasing annual precipitation. It was predicted that forage production of rangelands will decrease in the next couple of decades, especially in the western and southern parts of Isfahan Province. These changes are more pronounced in elevations between 2200 and 2900 m. Therefore, rangeland managers have to cope with these changes by holistic management approaches through mitigation and human adaptations. 展开更多
关键词 rangelands forage production climate change scenario generalized regression neural network Central Iran
下载PDF
Performance of Existing Biased Estimators and the Respective Predictors in a Misspecified Linear Regression Model 被引量:1
12
作者 Manickavasagar Kayanan Pushpakanthie Wijekoon 《Open Journal of Statistics》 2017年第5期876-900,共25页
In this paper, the performance of existing biased estimators (Ridge Estimator (RE), Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Esti... In this paper, the performance of existing biased estimators (Ridge Estimator (RE), Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Estimator (PCRE), r-k class estimator and r-d class estimator) and the respective predictors were considered in a misspecified linear regression model when there exists multicollinearity among explanatory variables. A generalized form was used to compare these estimators and predictors in the mean square error sense. Further, theoretical findings were established using mean square error matrix and scalar mean square error. Finally, a numerical example and a Monte Carlo simulation study were done to illustrate the theoretical findings. The simulation study revealed that LE and RE outperform the other estimators when weak multicollinearity exists, and RE, r-k class and r-d class estimators outperform the other estimators when moderated and high multicollinearity exist for certain values of shrinkage parameters, respectively. The predictors based on the LE and RE are always superior to the other predictors for certain values of shrinkage parameters. 展开更多
关键词 Misspecified regression Model generalized Biased Estimator generalized PREDICTOR Mean SQUARE ERROR Matrix SCALAR Mean SQUARE ERROR
下载PDF
基于Regression GAN的原油总氢物性预测方法 被引量:6
13
作者 郑念祖 丁进良 《自动化学报》 EI CSCD 北大核心 2018年第5期915-921,共7页
针对生成对抗网络(Generative adversarial network,GAN)不适用于原油物性回归预测的问题,本文提出一种回归生成对抗网络(Regression GAN,RGAN)结构,该结构由生成模型G、判别模型D及回归模型R组成.通过判别模型D与生成模型G间的对抗学... 针对生成对抗网络(Generative adversarial network,GAN)不适用于原油物性回归预测的问题,本文提出一种回归生成对抗网络(Regression GAN,RGAN)结构,该结构由生成模型G、判别模型D及回归模型R组成.通过判别模型D与生成模型G间的对抗学习,D提取原油物性核磁共振氢谱(~1H NMR)谱图的潜在特征.首层潜在特征是样本空间的浅层表示利于解决回归问题,采用首层潜在特征建立回归模型R,提高了预测的精度及稳定性.通过增加条件变量和生成样本间的互信息约束,并采用回归模型R的MSE损失函数估计互信息下界,生成模型G产生更真实的样本.实验结果表明,RGAN有效地提高了原油总氢物性回归预测精度及稳定性,同时加快了生成模型的收敛速度,提高了谱图的生成质量. 展开更多
关键词 回归生成对抗网络 原油物性预测 生成对抗网络 核磁共振氢谱
下载PDF
A KIND OF GENERAL INFLUENCE MEASURE ON THE LINEAR WEIGHTED REGRESSION
14
作者 杨虎 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第9期877-881,共5页
The linear weighted regression model is one of the models studied in many articles in recent years. Some further problems, such as disturbation, influence measure and estimate efficiency, have been discussed in this p... The linear weighted regression model is one of the models studied in many articles in recent years. Some further problems, such as disturbation, influence measure and estimate efficiency, have been discussed in this paper on the basis of the regression diagnosties. The partial conclusions of this paper are the extension of the familiar concepts in the regression diagnosties theory[2' 3,7] because they are representative of this kind of model. 展开更多
关键词 heteroscedastic regression diagnostic efficiency generalized student's residual influence measure
下载PDF
Fuzzy Varying Coefficient Bilinear Regression of Yield Series
15
作者 Ting He Qiujun Lu 《Journal of Data Analysis and Information Processing》 2015年第3期43-54,共12页
We construct a fuzzy varying coefficient bilinear regression model to deal with the interval financial data and then adopt the least-squares method based on symmetric fuzzy number space. Firstly, we propose a varying ... We construct a fuzzy varying coefficient bilinear regression model to deal with the interval financial data and then adopt the least-squares method based on symmetric fuzzy number space. Firstly, we propose a varying coefficient model on the basis of the fuzzy bilinear regression model. Secondly, we develop the least-squares method according to the complete distance between fuzzy numbers to estimate the coefficients and test the adaptability of the proposed model by means of generalized likelihood ratio test with SSE composite index. Finally, mean square errors and mean absolutely errors are employed to evaluate and compare the fitting of fuzzy auto regression, fuzzy bilinear regression and fuzzy varying coefficient bilinear regression models, and also the forecasting of three models. Empirical analysis turns out that the proposed model has good fitting and forecasting accuracy with regard to other regression models for the capital market. 展开更多
关键词 FUZZY VARYING COEFFICIENT BILINEAR regression Model FUZZY Financial Assets YIELD LEAST-SQUARES Method generalized Likelihood Ratio Test Forecast
下载PDF
A Geometric View on Inner Transformation between the Variables of a Linear Regression Model
16
作者 Zhaoyang Li Bostjan Antoncic 《Applied Mathematics》 2021年第10期931-938,共8页
In the teaching and researching of linear regression analysis, it is interesting and enlightening to explore how the dependent variable vector can be inner-transformed into regression coefficient estimator vector from... In the teaching and researching of linear regression analysis, it is interesting and enlightening to explore how the dependent variable vector can be inner-transformed into regression coefficient estimator vector from a visible geometrical view. As an example, the roadmap of such inner transformation is presented based on a simple multiple linear regression model in this work. By applying the matrix algorithms like singular value decomposition (SVD) and Moore-Penrose generalized matrix inverse, the dependent variable vector lands into the right space of the independent variable matrix and is metamorphosed into regression coefficient estimator vector through the three-step of inner transformation. This work explores the geometrical relationship between the dependent variable vector and regression coefficient estimator vector as well as presents a new approach for vector rotating. 展开更多
关键词 Matrix Singular Value Decomposition Moore-Penrose generalized Inverse Matrix Inner Transformation regression Analysis
下载PDF
Regression Models of the Impact of Rockmass and Blast Design Variations on the Effectiveness of Iron Ore Surface Blasting 被引量:1
17
作者 Antipas Thadei Safari Massawe Karim Rajabu Baruti 《Engineering(科研)》 2011年第1期55-62,共8页
The desired economics of hard rock surface mining is mainly determined by the parameters of process design which minimize the overall cost per tonne of the rock mined in drilling, blasting, handling and primary crushi... The desired economics of hard rock surface mining is mainly determined by the parameters of process design which minimize the overall cost per tonne of the rock mined in drilling, blasting, handling and primary crushing in given rockmass conditions. The most effective parameters of process design could be established based on the regression models of the cumulative influence of rockmass and mine design parameters on the overall cost per tonne of the rock drilled, blasted, handled and crushed. These models could be developed from the huge data accumulated worldwide on the costs per tonne of hard rock surface mining in drilling, blasting, handling and primary crushing vs the parameters of rockmass and mine design. This paper only dwelt on the development of regression models for oversize generation, blasthole productivity and blasting cost for iron ore surface mines, whose data is available. The SPSS standard statistical correlation – regression analysis software was used in the analysis. Interpretation of the models generated shows that the individual effects of the determinant rockmass and blast design parameters on oversize generation, blasthole productivity and blasting cost are all in compliance with the findings of other researchers and the theory of explosive rock fragmentation and could be used for the estimation of oversize generation, blasthole productivity and blasting cost in rockmass and blast design conditions similar to those of the iron ore surface mines examined in this study. However, the regression models obtained here could not be used alone for the optimization of blast design because most of the determinant parameters also have conflicting effect on the other processes of drilling, handling and primary crushing the blasted rock. Also, the quality and content of the regression models could be enhanced further by increasing the content of rockmass and blast design parameters and the volume of data considered in the regression analysis. 展开更多
关键词 BLASTING EFFECTIVENESS Oversize generation Blasthole PRODUCTIVITY BLASTING Cost Rockmass PARAMETERS BLAST Design PARAMETERS regression Models
下载PDF
Boosting the partial least square algorithm for regression modelling
18
作者 Ling YU Tiejun WU 《控制理论与应用(英文版)》 EI 2006年第3期257-260,共4页
Boosting algorithms are a class of general methods used to improve the general periormance of regression analysis. The main idea is to maintain a distribution over the train set. In order to use the given distribution... Boosting algorithms are a class of general methods used to improve the general periormance of regression analysis. The main idea is to maintain a distribution over the train set. In order to use the given distribution directly, a modified PLS algorithm is proposed and used as the base learner to deal with the nonlinear multivariate regression problems. Experiments on gasoline octane number prediction demonstrate that boosting the modified PLS algorithm has better general performance over the PLS algorithm. 展开更多
关键词 BOOSTING Partial least square (PLS) Multivariate regression GENERALIZATION
下载PDF
Prediction of Water Table Based on General Regression Neural Network
19
作者 GUAN Shuai QIAN Cheng 《科技视界》 2017年第35期56-57,共2页
Traditional methods for water table prediction have such defects as extensive calculation and reliance on the presupposition of a homogeneous and regular aquifer.Based on the fundamentals of the general regression neu... Traditional methods for water table prediction have such defects as extensive calculation and reliance on the presupposition of a homogeneous and regular aquifer.Based on the fundamentals of the general regression neural network(GRNN),this article sets up a GRNN model for water level prediction.Case study indicates that this model,even with limited information,has satisfactory prediction accuracy,which,coupled with a simple model structure and relatively high calculation efficiency,mean a vast application prospect for the model. 展开更多
关键词 GENERAL regression NEURAL network Water TABLE PREDICTION INDEX model LINEAR regression
下载PDF
有序标签噪声的鲁棒估计与过滤方法
20
作者 姜高霞 王菲 +1 位作者 许行 王文剑 《计算机科学》 CSCD 北大核心 2024年第6期144-152,共9页
较大规模的标注数据集中难免会存在标签噪声,这在一定程度上限制了模型的泛化性能。有序回归数据集的标签是离散值,但不同标签之间又有一定次序关系。虽然有序回归的标签兼有分类和回归标签的特征,但面向分类和回归任务的标签噪声过滤... 较大规模的标注数据集中难免会存在标签噪声,这在一定程度上限制了模型的泛化性能。有序回归数据集的标签是离散值,但不同标签之间又有一定次序关系。虽然有序回归的标签兼有分类和回归标签的特征,但面向分类和回归任务的标签噪声过滤算法对有序标签噪声并不完全适用。针对此问题,提出了标签含噪时回归模型的Akaike泛化误差估计,在此基础上设计了面向有序回归任务的标签噪声过滤框架。此外,提出了一种鲁棒的有序标签噪声估计方法,其采用基于中位数的融合策略以降低异常估计分量的干扰。最后,该方法与所提框架结合形成了噪声鲁棒融合过滤(Robust Fusion Filtering,RFF)算法。在标准数据集和真实年龄估计数据集上均验证了算法的有效性。实验结果表明,在有序回归任务中,RFF算法性能优于其他分类和回归过滤算法,能够适应不同类型的噪声数据,并有效提升数据质量和模型泛化性能。 展开更多
关键词 标签噪声 有序回归 Akaike泛化误差估计 噪声过滤 鲁棒噪声估计
下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部