期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
广义回归神经网络残余Kriging方法预测地表高程 被引量:2
1
作者 袁贺 罗问 刘付程 《安徽大学学报(自然科学版)》 CAS 北大核心 2010年第5期21-26,共6页
以广东省番禹区沙洲和石楼镇岛地区的1 657个高程点为样本点,把其分为A、B、C组各200个高程点,A+B组400个高程点,A+B+C组600个高程点作为训练数据集,在Matlab 7.1和ArcGIS 9.2平台上分别应用广义回归神经网络(GRNN)、普通克里格(O-Krigi... 以广东省番禹区沙洲和石楼镇岛地区的1 657个高程点为样本点,把其分为A、B、C组各200个高程点,A+B组400个高程点,A+B+C组600个高程点作为训练数据集,在Matlab 7.1和ArcGIS 9.2平台上分别应用广义回归神经网络(GRNN)、普通克里格(O-Kriging)、广义回归神经网络残余Kriging方法(GRNNRK)进行高程估值和成图,最后计算出三种方法的均方根误差.结果表明,如果插值样本数据量不变,样本的空间分布格局对GRNNRK插值精度的影响不大,且其插值精度要优于GRNN和O-Kriging方法的插值精度.随着插值样本数据量的增加,三种方法的插值精度都有显著提高,但GRNNRK方法的插值精度仍优于另两种方法.这表明GRNNRK方法在地形高程预测中的应用是可行的. 展开更多
关键词 广义回归神经网络 克里格 残余 地表高程预测
下载PDF
沉积物粒度组分空间预测的神经网络残余kriging方法 被引量:1
2
作者 刘付程 杨毅 +3 位作者 张林 魏陶荣馨 王宇涵 夏量 《海洋通报》 CAS CSCD 北大核心 2020年第3期363-371,共9页
针对近海表层沉积物粒度组分空间变异的尺度差异性,提出了基于广义回归神经网络残余kriging的沉积物粒度组分空间预测方法,并以海州湾沉积物粒度数据为基础,分析了其在沉积物粒度组分空间预测和底质类型制图中的应用效果。结果表明,广... 针对近海表层沉积物粒度组分空间变异的尺度差异性,提出了基于广义回归神经网络残余kriging的沉积物粒度组分空间预测方法,并以海州湾沉积物粒度数据为基础,分析了其在沉积物粒度组分空间预测和底质类型制图中的应用效果。结果表明,广义回归神经网络残余kriging方法能够获得比普通kriging方法更高的沉积物粒度组分空间预测精度,并且其底质类型的总体空间预测精度达到85%以上,相应的Kappa系数也在0.8以上,显示底质制图的预测类型与样本的实测类型具有较高的一致性。新方法对于开展定量化的沉积物粒度组分空间预测和底质类型制图具有参考价值。 展开更多
关键词 广义回归神经网络残余kriging 沉积物粒度组分 空间预测 底质制图
下载PDF
基于PSO-GRNN模型的埋地管道腐蚀剩余寿命预测 被引量:23
3
作者 王文辉 骆正山 张新生 《表面技术》 EI CAS CSCD 北大核心 2019年第10期267-275,284,共10页
目的构建埋地管道腐蚀深度预测模型,预测腐蚀管道的剩余使用寿命。方法依据ASME B31G剩余强度评价标准,给出管道的最大允许腐蚀深度计算方法,引入广义回归神经网络(GRNN),构建埋地管道腐蚀深度预测模型,采用粒子群算法(PSO)优化GRNN的... 目的构建埋地管道腐蚀深度预测模型,预测腐蚀管道的剩余使用寿命。方法依据ASME B31G剩余强度评价标准,给出管道的最大允许腐蚀深度计算方法,引入广义回归神经网络(GRNN),构建埋地管道腐蚀深度预测模型,采用粒子群算法(PSO)优化GRNN的网络参数,结合管道腐蚀发展趋势预测方法,对埋地薄弱管道进行腐蚀剩余寿命预测。以陕西省某埋地输油管道为例,选取8个主要外腐蚀因素,构建外腐蚀指标体系,借助Pycharm编程仿真,结合埋片试验,对该模型预测结果进行验证分析,并预测各腐蚀管段剩余使用寿命。结果与BP模型相比,PSO-GRNN模型的管道腐蚀深度预测结果最大相对误差控制在13.77%以内,平均相对误差仅为6.63%。寿命预测结果显示,部分管段的剩余使用寿命未能达到其预期服役寿命。结论所建模型预测性能要明显优于BP模型,预测精度更高,能够较好地预测埋地管道的最大腐蚀深度和未来的腐蚀发展规律,剩余寿命预测结果贴近实际,为管道的维修和更换提供了指导依据,在实际工程中,具有一定的应用价值。 展开更多
关键词 埋地管道 腐蚀深度预测模型 腐蚀发展趋势 剩余寿命预测 粒子群算法(PSO) 广义回归神经网络(GRNN)
下载PDF
内腐蚀海底管道剩余强度的FOA-GRNN模型 被引量:11
4
作者 毕傲睿 骆正山 +1 位作者 宋莹莹 张新生 《中国安全科学学报》 CAS CSCD 北大核心 2020年第6期78-83,共6页
为探究内腐蚀海底管道剩余强度,保证管道安全运营,基于管道壁厚、直径,腐蚀深度、长度、宽度和极限抗拉强度等影响因素,提出果蝇优化算法(FOA)优化广义回归神经网络(GRNN)的剩余强度计算方法,应用GRNN构建剩余强度预测模型;采用FOA优化... 为探究内腐蚀海底管道剩余强度,保证管道安全运营,基于管道壁厚、直径,腐蚀深度、长度、宽度和极限抗拉强度等影响因素,提出果蝇优化算法(FOA)优化广义回归神经网络(GRNN)的剩余强度计算方法,应用GRNN构建剩余强度预测模型;采用FOA优化模型,人为设置光滑因子的负面影响;通过有限元模拟生成影响因素和剩余强度数据库,并采用FOA-GRNN模型训练和预测;以巴西国家石油研究中心的极限强度爆破试验数据为例,分析验证预测模型。结果表明:FOAGRNN模型对有限元模拟数据的剩余强度预测平均相对误差(ARE)为16.53%,对试验数据预测ARE为7.81%,预测结果合理、准确。 展开更多
关键词 内腐蚀海底管道 剩余强度 果蝇优化算法(FOA) 广义回归神经网络(GRNN) 有限元
下载PDF
基于监测数据的电磁频谱地图构建与验证 被引量:1
5
作者 查淞 夏海洋 +3 位作者 黄纪军 刘继斌 马晨 李冰 《国防科技大学学报》 EI CAS CSCD 北大核心 2023年第3期171-178,共8页
提出基于广义回归神经网络拟合和聚类克里金的构建方法,通过趋势面拟合,将电磁频谱地图构建分解为路径衰减和阴影衰落分量的估计问题,以提升构建精度;设计监测数据聚类和自适应最优邻域选取机制,在保证构建精度的条件下减小计算数据量,... 提出基于广义回归神经网络拟合和聚类克里金的构建方法,通过趋势面拟合,将电磁频谱地图构建分解为路径衰减和阴影衰落分量的估计问题,以提升构建精度;设计监测数据聚类和自适应最优邻域选取机制,在保证构建精度的条件下减小计算数据量,以提升构建速度,从而利用数量有限的电磁环境监测数据,在不需要先验信息的条件下实现电磁频谱地图的准确、快速构建。设计并实现电磁频谱地图验证系统,搭建车载数据采集设备,利用实测电磁环境监测数据,验证所提方法的可行性及构建性能。 展开更多
关键词 电磁频谱地图 电磁环境监测数据 广义回归神经网络 聚类克里金 实测数据
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部