Let(ξ_n)_(n=0)~∞ be a Markov chain with the state space X = {1, 2, · · ·, b},(g_n(x, y))_(n=1)~∞ be functions defined on X × X, and F_(m_n,b_n)(ω) =1 /b_n sum from k=m_n+1 to m_n+b_n g_k(ξ_(k-...Let(ξ_n)_(n=0)~∞ be a Markov chain with the state space X = {1, 2, · · ·, b},(g_n(x, y))_(n=1)~∞ be functions defined on X × X, and F_(m_n,b_n)(ω) =1 /b_n sum from k=m_n+1 to m_n+b_n g_k(ξ_(k-1), ξ_k).In this paper the limit properties of F_(m_n,b_n)(ω) and the generalized relative entropy density f_(m_n,b_n)(ω) =-(1/b_n) log p(ξ_(m_n,m_n+b_n)) are discussed, and some theorems on a.s. convergence for(ξ_n)_n=0~∞ and the generalized Shannon-McMillan(AEP) theorem on finite nonhomogeneous Markov chains are obtained.展开更多
基金supported in part by the NNSF of China(No.11571142)the RP of Anhui Provincial Department of Education(No.KJ2017A851)
文摘Let(ξ_n)_(n=0)~∞ be a Markov chain with the state space X = {1, 2, · · ·, b},(g_n(x, y))_(n=1)~∞ be functions defined on X × X, and F_(m_n,b_n)(ω) =1 /b_n sum from k=m_n+1 to m_n+b_n g_k(ξ_(k-1), ξ_k).In this paper the limit properties of F_(m_n,b_n)(ω) and the generalized relative entropy density f_(m_n,b_n)(ω) =-(1/b_n) log p(ξ_(m_n,m_n+b_n)) are discussed, and some theorems on a.s. convergence for(ξ_n)_n=0~∞ and the generalized Shannon-McMillan(AEP) theorem on finite nonhomogeneous Markov chains are obtained.