In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are ob...In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are obtained.展开更多
Abstract. In this paper, we study the quotient of hypergeometric functions μα (r) in the theory of Ramanujan's generalized modular equation for α ∈(0, 1/2]. Several new inequalities are given for this and rela...Abstract. In this paper, we study the quotient of hypergeometric functions μα (r) in the theory of Ramanujan's generalized modular equation for α ∈(0, 1/2]. Several new inequalities are given for this and related functions. Our main results complement and generalize some known results in the literature.展开更多
Pseudopolar rings are closely related to strongly -regular rings, uniquelystrongly clean rings and semiregular rings. In this paper, we investigate pseudopolar-ity of generalized matrix rings Ks(R) over a local ring...Pseudopolar rings are closely related to strongly -regular rings, uniquelystrongly clean rings and semiregular rings. In this paper, we investigate pseudopolar-ity of generalized matrix rings Ks(R) over a local ring R. We determine the conditionsunder which elements of Ks(R) are pseudopolar. Assume that R is a local ring. It isshown that A ∈ Ks(R) is pseudopolar if and only if A is invertible or A^2 ∈ J(Ks(R))or A is similar to a diagonal matrix [ u 0 0 j ]; where lu -rj and lj-ru are injectiveand u 2 U(R) and j ∈ J(R). Furthermore, several equivalent conditions for Ks(R)over a local ring R to be pseudopolar are obtained.展开更多
Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power ser...Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power series with coefficients in R and exponents in S, is right p.q.Baer if and only if R is right p.q.Baer and any S-indexed subset of I(R) has a generalized join in I(R), where I(R) is the set of all idempotents of R.展开更多
Let R be a commutative ring and (S, ≤) a strictly totally ordered monoid which satisfies the condition that 0 ≤ s for every s ∈ S. In this paper we show that if RM is a PS-module, then the module [[MS≤]] of genera...Let R be a commutative ring and (S, ≤) a strictly totally ordered monoid which satisfies the condition that 0 ≤ s for every s ∈ S. In this paper we show that if RM is a PS-module, then the module [[MS≤]] of generalized power series over M is a PS [[RS,≤]]-module.展开更多
Peal[2] shows that a sufficient and necessary condition on the existence of theMoore-Penrose inverse over any fields.Zhuang [3] generalize the result to any divisionrings.In this section we give another sufficient and...Peal[2] shows that a sufficient and necessary condition on the existence of theMoore-Penrose inverse over any fields.Zhuang [3] generalize the result to any divisionrings.In this section we give another sufficient and necessary condition on the existence ofthe Moore-Penrose inverse over any division rings.Our result can be regarded as an im-provement of Theorem lin[1].As a medium result,we also show a characterization ofthe{1,2}-inverse.展开更多
Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]]...Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R) has a generalized join in S,(R). Several known results follow as consequences of our results.展开更多
Let R be a ring and (S,≤) a strictly ordered monoid. In this paper, we deal with a new approach to reflexive property for rings by using nilpotent elements, in this direction we introduce the notions of generalized p...Let R be a ring and (S,≤) a strictly ordered monoid. In this paper, we deal with a new approach to reflexive property for rings by using nilpotent elements, in this direction we introduce the notions of generalized power series reflexive and nil generalized power series reflexive, respectively. We obtain various necessary or sufficient conditions for a ring to be generalized power series reflexive and nil generalized power series reflexive. Examples are given to show that, nil generalized power series reflexive need not be generalized power series reflexive and vice versa, and nil generalized power series reflexive but not semicommutative are presented. We proved that, if R is a left APP-ring, then R is generalized power series reflexive, and R is nil generalized power series reflexive if and only if R/I is nil generalized power series reflexive. Moreover, we investigate ring extensions which have roles in ring theory.展开更多
Let R be a ring. We define a dimension, called P-cotorsion dimension, for modules and rings. The aim of this article is to investigate P-cotorsion dimensions of modules and rings and the relations between P-cotorsion ...Let R be a ring. We define a dimension, called P-cotorsion dimension, for modules and rings. The aim of this article is to investigate P-cotorsion dimensions of modules and rings and the relations between P-cotorsion dimension and other homological dimensions. This dimension has nice properties when the ring in consideration is generalized morphic.展开更多
Let R be a ring and J(R) the Jacobson radical. An element a of R is called(strongly) J-clean if there is an idempotent e ∈ R and w ∈ J(R) such that a = e + w(and ew = we). The ring R is called a(strongly)...Let R be a ring and J(R) the Jacobson radical. An element a of R is called(strongly) J-clean if there is an idempotent e ∈ R and w ∈ J(R) such that a = e + w(and ew = we). The ring R is called a(strongly) J-clean ring provided that every one of its elements is(strongly) J-clean. We discuss, in the present paper,some properties of J-clean rings and strongly J-clean rings. Moreover, we investigate J-cleanness and strongly J-cleanness of generalized matrix rings. Some known results are also extended.展开更多
The purpose of this paper is to characterize strongly regular rings via MERT rings and weakly one-sided ideals. Many important equivalent conditions on strongly regular rings are shown.
As a proper setting to study Gorenstein projective and injective dimensions of modules via vanishing of Gorenstein Ext-functors, a notion of a generalized Gorenstein ring is introduced, which is a non-trivial generali...As a proper setting to study Gorenstein projective and injective dimensions of modules via vanishing of Gorenstein Ext-functors, a notion of a generalized Gorenstein ring is introduced, which is a non-trivial generalization of Gorenstein rings. Moreover, a new proof for Bennis and Mahdou's equality of global Gorenstein dimension is given.展开更多
Let R be a ring and S a cancellative and torsion-free monoid and 〈 a strict order on S. If either (S,≤) satisfies the condition that 0 ≤ s for all s ∈ S, or R is reduced, then the ring [[R^S,≤]] of the generali...Let R be a ring and S a cancellative and torsion-free monoid and 〈 a strict order on S. If either (S,≤) satisfies the condition that 0 ≤ s for all s ∈ S, or R is reduced, then the ring [[R^S,≤]] of the generalized power series with coefficients in R and exponents in S has the same triangulating dimension as R. Furthermore, if R is a PWP ring, then so is [[R^S,≤]].展开更多
Let A,B be associative rings with identity,and(S.≤)a strictly totally ordered monoid which is also artinian and finitely generated.For any bimodule AaMB. we show that the bimodule [[A^(S.≤)]][M^(S.≤)][[B^(S.≤)]]de...Let A,B be associative rings with identity,and(S.≤)a strictly totally ordered monoid which is also artinian and finitely generated.For any bimodule AaMB. we show that the bimodule [[A^(S.≤)]][M^(S.≤)][[B^(S.≤)]]defines a Morita duality if and only if _AM_B defines a Morita duality and A is left noetherian.B is right noetherian.As a corollary,it.is shown that the ring[[A^(S.≤)]]of generalized power series over A has a Morita duality if and only if A is a left noetherian ring with a Morita duality induced by a bimodule _AM_B such that B is right noetherian.展开更多
As a generalization of power series rings, Ribenboim introduced the notion of the rings of generalized power series. Let R be a commutative ring, and (S.≤) a strictly totally ordered monoid. We prove that (1) the...As a generalization of power series rings, Ribenboim introduced the notion of the rings of generalized power series. Let R be a commutative ring, and (S.≤) a strictly totally ordered monoid. We prove that (1) the ring [[R<sup>(</sup>S.≤]] of generalized power series is a PP-ring if and only if R is a PP-ring and every S-indexed subset C of B(R) (the set of all idempotents of R) has a least upper bound in B(R). and (2) if (S. ≤) also satisfies the condition that 0≤s for any s∈S, then the ring [[R<sup>(</sup>S.≤]] is weakly PP if and only if R is weakly PP.展开更多
Firstly,the commutativity of rings is investigated in this paper.Let R be a ring with identity.Then we obtain the following commutativity conditions:(1)if for each x∈R\N(R)and each y∈R,(xy)^(k)=x^(k)y^(k)for k=m,m+1...Firstly,the commutativity of rings is investigated in this paper.Let R be a ring with identity.Then we obtain the following commutativity conditions:(1)if for each x∈R\N(R)and each y∈R,(xy)^(k)=x^(k)y^(k)for k=m,m+1,n,n+1,where m and n are relatively prime positive integers,then R is commutative;(2)if for each x∈R\J(R)and each y∈R,(xy)^(k)=y^(k)x^(k)for k=m,m+1,m+2,where m is a positive integer,then R is commutative.Secondly,generalized 2-CN rings,a kind of ring being commutative to some extent,are investigated.Some relations between generalized 2-CN rings and other kinds of rings,such as reduced rings,regular rings,2-good rings,and weakly Abel rings,are presented.展开更多
In this paper, the concept of right generalized semi-π-regular rings is defined. We prove that these rings are non-trival generalizations of both right GP-injective rings and semi- π-regular rings. Some properties o...In this paper, the concept of right generalized semi-π-regular rings is defined. We prove that these rings are non-trival generalizations of both right GP-injective rings and semi- π-regular rings. Some properties of these rings are studied and some results about generalized semiregular rings and GP-injective rings are extended.展开更多
Let α be a nonzero endomorphism of a ring R, n be a positive integer and T_n(R, α) be the skew triangular matrix ring. We show that some properties related to nilpotent elements of R are inherited by T_n(R, α)....Let α be a nonzero endomorphism of a ring R, n be a positive integer and T_n(R, α) be the skew triangular matrix ring. We show that some properties related to nilpotent elements of R are inherited by T_n(R, α). Meanwhile, we determine the strongly prime radical, generalized prime radical and Behrens radical of the ring R[x; α]/(x^n), where R[x; α] is the skew polynomial ring.展开更多
In this paper,we introduce a non-trivial generalization of ZI-rings-quasi ZI-rings.A ring R is called a quasi ZI-ring,if for any non-zero elements a,b ∈ R,ab = 0 implies that there exists a positive integer n such th...In this paper,we introduce a non-trivial generalization of ZI-rings-quasi ZI-rings.A ring R is called a quasi ZI-ring,if for any non-zero elements a,b ∈ R,ab = 0 implies that there exists a positive integer n such that an = 0 and anRbn = 0.The non-singularity and regularity of quasi ZI,GP-Vˊ-rings are studied.Some new characterizations of strong regular rings are obtained.These effectively extend some known results.展开更多
This paper is motivated by S. Park [10] in which the injective cover of left R[x]- module M[x? ] of inverse polynomials over a left R-module M was discussed. The 1 author considers the ?-covers of modules and shows th...This paper is motivated by S. Park [10] in which the injective cover of left R[x]- module M[x? ] of inverse polynomials over a left R-module M was discussed. The 1 author considers the ?-covers of modules and shows that if η : P ?→ M is an ?- cover of M, then [ηS, ] : [PS, ] ?→ [MS, ] is an [?S, ]-cover of left [[RS, ]]-module ≤ ≤ ≤ ≤ ≤ [MS, ], where ? is a class of left R-modules and [MS, ] is the left [[RS, ]]-module of ≤ ≤ ≤ generalized inverse polynomials over a left R-module M. Also some properties of the injective cover of left [[RS, ]]-module [MS, ] are discussed. ≤展开更多
文摘In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are obtained.
基金Supported by the Zhejiang Provincial Natural Science Foundation of China(LQ17A010010)the National Natural Science Foundation of China(11171307,11671360)the Natural Science Foundation of the Department of Education of Zhejiang Province(Y201328799)
文摘Abstract. In this paper, we study the quotient of hypergeometric functions μα (r) in the theory of Ramanujan's generalized modular equation for α ∈(0, 1/2]. Several new inequalities are given for this and related functions. Our main results complement and generalize some known results in the literature.
文摘Pseudopolar rings are closely related to strongly -regular rings, uniquelystrongly clean rings and semiregular rings. In this paper, we investigate pseudopolar-ity of generalized matrix rings Ks(R) over a local ring R. We determine the conditionsunder which elements of Ks(R) are pseudopolar. Assume that R is a local ring. It isshown that A ∈ Ks(R) is pseudopolar if and only if A is invertible or A^2 ∈ J(Ks(R))or A is similar to a diagonal matrix [ u 0 0 j ]; where lu -rj and lj-ru are injectiveand u 2 U(R) and j ∈ J(R). Furthermore, several equivalent conditions for Ks(R)over a local ring R to be pseudopolar are obtained.
基金TRAPOYT(200280)the Cultivation Fund(704004)of the Key Scientific and Technical Innovation Project,Ministry of Education of China
文摘Let R be a ring such that all left semicentral idempotents are central and (S, ≤) a strictly totally ordered monoid satisfying that 0 ≤s for all s ∈S. It is shown that [[R^S≤]], the ring of generalized power series with coefficients in R and exponents in S, is right p.q.Baer if and only if R is right p.q.Baer and any S-indexed subset of I(R) has a generalized join in I(R), where I(R) is the set of all idempotents of R.
基金The NNSF (10171082) of China and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, P.R.C.
文摘Let R be a commutative ring and (S, ≤) a strictly totally ordered monoid which satisfies the condition that 0 ≤ s for every s ∈ S. In this paper we show that if RM is a PS-module, then the module [[MS≤]] of generalized power series over M is a PS [[RS,≤]]-module.
基金This work is Supported by NSF of Heilongjiang Province
文摘Peal[2] shows that a sufficient and necessary condition on the existence of theMoore-Penrose inverse over any fields.Zhuang [3] generalize the result to any divisionrings.In this section we give another sufficient and necessary condition on the existence ofthe Moore-Penrose inverse over any division rings.Our result can be regarded as an im-provement of Theorem lin[1].As a medium result,we also show a characterization ofthe{1,2}-inverse.
基金The Youth Foundation(QN2012-14)of Hexi University
文摘Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R) has a generalized join in S,(R). Several known results follow as consequences of our results.
文摘Let R be a ring and (S,≤) a strictly ordered monoid. In this paper, we deal with a new approach to reflexive property for rings by using nilpotent elements, in this direction we introduce the notions of generalized power series reflexive and nil generalized power series reflexive, respectively. We obtain various necessary or sufficient conditions for a ring to be generalized power series reflexive and nil generalized power series reflexive. Examples are given to show that, nil generalized power series reflexive need not be generalized power series reflexive and vice versa, and nil generalized power series reflexive but not semicommutative are presented. We proved that, if R is a left APP-ring, then R is generalized power series reflexive, and R is nil generalized power series reflexive if and only if R/I is nil generalized power series reflexive. Moreover, we investigate ring extensions which have roles in ring theory.
基金supported by Collegial Natural Science Research Program of Education Department of Jiangsu Province (07KJD110043)
文摘Let R be a ring. We define a dimension, called P-cotorsion dimension, for modules and rings. The aim of this article is to investigate P-cotorsion dimensions of modules and rings and the relations between P-cotorsion dimension and other homological dimensions. This dimension has nice properties when the ring in consideration is generalized morphic.
文摘Let R be a ring and J(R) the Jacobson radical. An element a of R is called(strongly) J-clean if there is an idempotent e ∈ R and w ∈ J(R) such that a = e + w(and ew = we). The ring R is called a(strongly) J-clean ring provided that every one of its elements is(strongly) J-clean. We discuss, in the present paper,some properties of J-clean rings and strongly J-clean rings. Moreover, we investigate J-cleanness and strongly J-cleanness of generalized matrix rings. Some known results are also extended.
基金This work was supported in part by the NNSF (10071035) of China
文摘The purpose of this paper is to characterize strongly regular rings via MERT rings and weakly one-sided ideals. Many important equivalent conditions on strongly regular rings are shown.
基金Supported by the National Natural Science Foundation of China(11401476) Supported by the Project for Universities of Gansu Province(2015A-019)
文摘As a proper setting to study Gorenstein projective and injective dimensions of modules via vanishing of Gorenstein Ext-functors, a notion of a generalized Gorenstein ring is introduced, which is a non-trivial generalization of Gorenstein rings. Moreover, a new proof for Bennis and Mahdou's equality of global Gorenstein dimension is given.
基金National Natural science Foundation of China(10171082)the Cultivation Fund of the Key Scientific Technical Innovation Project,Ministry of Education of ChinaTRAPOYT
文摘Let R be a ring and S a cancellative and torsion-free monoid and 〈 a strict order on S. If either (S,≤) satisfies the condition that 0 ≤ s for all s ∈ S, or R is reduced, then the ring [[R^S,≤]] of the generalized power series with coefficients in R and exponents in S has the same triangulating dimension as R. Furthermore, if R is a PWP ring, then so is [[R^S,≤]].
基金supported by National Natural Science Foundation of China(10171082)Foundation for University Key Teacherthe Ministry of Education(GG-110-10736-1001)
文摘Let A,B be associative rings with identity,and(S.≤)a strictly totally ordered monoid which is also artinian and finitely generated.For any bimodule AaMB. we show that the bimodule [[A^(S.≤)]][M^(S.≤)][[B^(S.≤)]]defines a Morita duality if and only if _AM_B defines a Morita duality and A is left noetherian.B is right noetherian.As a corollary,it.is shown that the ring[[A^(S.≤)]]of generalized power series over A has a Morita duality if and only if A is a left noetherian ring with a Morita duality induced by a bimodule _AM_B such that B is right noetherian.
基金Research supported by National Natural Science Foundation of China. 19501007Natural Science Foundation of Gansu. ZQ-96-01
文摘As a generalization of power series rings, Ribenboim introduced the notion of the rings of generalized power series. Let R be a commutative ring, and (S.≤) a strictly totally ordered monoid. We prove that (1) the ring [[R<sup>(</sup>S.≤]] of generalized power series is a PP-ring if and only if R is a PP-ring and every S-indexed subset C of B(R) (the set of all idempotents of R) has a least upper bound in B(R). and (2) if (S. ≤) also satisfies the condition that 0≤s for any s∈S, then the ring [[R<sup>(</sup>S.≤]] is weakly PP if and only if R is weakly PP.
基金This work was in part supported by the National Science Foundation of China under Grant Nos.11701499 and 11671008the National Science Foundation of Projects of Jiangsu Province of China under Grant No.BK20170589.
文摘Firstly,the commutativity of rings is investigated in this paper.Let R be a ring with identity.Then we obtain the following commutativity conditions:(1)if for each x∈R\N(R)and each y∈R,(xy)^(k)=x^(k)y^(k)for k=m,m+1,n,n+1,where m and n are relatively prime positive integers,then R is commutative;(2)if for each x∈R\J(R)and each y∈R,(xy)^(k)=y^(k)x^(k)for k=m,m+1,m+2,where m is a positive integer,then R is commutative.Secondly,generalized 2-CN rings,a kind of ring being commutative to some extent,are investigated.Some relations between generalized 2-CN rings and other kinds of rings,such as reduced rings,regular rings,2-good rings,and weakly Abel rings,are presented.
文摘In this paper, the concept of right generalized semi-π-regular rings is defined. We prove that these rings are non-trival generalizations of both right GP-injective rings and semi- π-regular rings. Some properties of these rings are studied and some results about generalized semiregular rings and GP-injective rings are extended.
文摘Let α be a nonzero endomorphism of a ring R, n be a positive integer and T_n(R, α) be the skew triangular matrix ring. We show that some properties related to nilpotent elements of R are inherited by T_n(R, α). Meanwhile, we determine the strongly prime radical, generalized prime radical and Behrens radical of the ring R[x; α]/(x^n), where R[x; α] is the skew polynomial ring.
基金Supported by the National Natural Science Foundation of China (Grant Nos.10871106 10901002+1 种基金 10971099)the Natural Science Foundation of Anhui Provincial Education Committee (Grant No.KJ2008A026)
文摘In this paper,we introduce a non-trivial generalization of ZI-rings-quasi ZI-rings.A ring R is called a quasi ZI-ring,if for any non-zero elements a,b ∈ R,ab = 0 implies that there exists a positive integer n such that an = 0 and anRbn = 0.The non-singularity and regularity of quasi ZI,GP-Vˊ-rings are studied.Some new characterizations of strong regular rings are obtained.These effectively extend some known results.
基金the National Natural Science Foundation of China (No.10171082) the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministry of Education of China and NWNU-KJCXGC212.
文摘This paper is motivated by S. Park [10] in which the injective cover of left R[x]- module M[x? ] of inverse polynomials over a left R-module M was discussed. The 1 author considers the ?-covers of modules and shows that if η : P ?→ M is an ?- cover of M, then [ηS, ] : [PS, ] ?→ [MS, ] is an [?S, ]-cover of left [[RS, ]]-module ≤ ≤ ≤ ≤ ≤ [MS, ], where ? is a class of left R-modules and [MS, ] is the left [[RS, ]]-module of ≤ ≤ ≤ generalized inverse polynomials over a left R-module M. Also some properties of the injective cover of left [[RS, ]]-module [MS, ] are discussed. ≤