The functionally generalized variable separation of the generalized nonlinear diffusion equations ut = A(u, Ux)Uxx + B(u, ux) is studied by using the conditional Lie-Blicklund symmetry method. The variant forms o...The functionally generalized variable separation of the generalized nonlinear diffusion equations ut = A(u, Ux)Uxx + B(u, ux) is studied by using the conditional Lie-Blicklund symmetry method. The variant forms of the considered equations, which admit the corresponding conditional Lie--Biicklund symmetries, are characterized. To construct functionally gener- alized separable solutions, several concrete examples defined on the exponential and trigonometric invariant subspaces are provided.展开更多
Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Further...Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Furthermore, blow up and behavior of those exact solutions are also investigated.展开更多
By using the approximate derivative-dependent functional variable separation approach, we study the quasi-linear diffusion equations with a weak source ut = (A(u)Ux)x + eB(u, Ux). A complete classification of t...By using the approximate derivative-dependent functional variable separation approach, we study the quasi-linear diffusion equations with a weak source ut = (A(u)Ux)x + eB(u, Ux). A complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is listed. As a consequence, some approxi- mate solutions to the resulting perturbed equations are constructed via examples.展开更多
The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as ...The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations is analyzed to shed light oi1 the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differentii equations and their corresponding exact solutions with generalized separated variables.展开更多
The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonl...The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonlinear ordinary differential equations, which is equivalent to a kind of higher=order conditional Lie-B^icklund symmetries of the equations. As a consequence, a number of new solutions to the inhomogeneous nonlinear diffusion equations are constructed explicitly or reduced to solving finite-dimensional dynamical sys- tems.展开更多
Recently, triboelectric generator(TEG) has attracted a lot of attention due to its high output voltage and low-cost fabrication process. Here, a novel cubic TEG box is designed, which has separated electrodes on diffe...Recently, triboelectric generator(TEG) has attracted a lot of attention due to its high output voltage and low-cost fabrication process. Here, a novel cubic TEG box is designed, which has separated electrodes on different surfaces. Thanks to the specially designed structure, it can scavenge vibration energy from all directions. Firstly the device is investigated through finite element method(FEM) simulation. Then the device is evaluated by experiments. The measuremental results show that this device can generate an amount of 25 n C charge during once shake by charging a 10 n F capacitor. Besides, an output voltage about 100 V is obtained, which is able to directly light up several light-emitting diodes(LEDs) simultaneously. At last, the device is utilized as a self-powered orientation sensor, which shows explicit directivity. This work extends the applications of TEG for ambient vibration energy harvesting techniques and the self-powered orientation sensor.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11371293,11401458,and 11501438)the National Natural Science Foundation of China,Tian Yuan Special Foundation(Grant No.11426169)the Natural Science Basic Research Plan in Shaanxi Province of China(Gran No.2015JQ1014)
文摘The functionally generalized variable separation of the generalized nonlinear diffusion equations ut = A(u, Ux)Uxx + B(u, ux) is studied by using the conditional Lie-Blicklund symmetry method. The variant forms of the considered equations, which admit the corresponding conditional Lie--Biicklund symmetries, are characterized. To construct functionally gener- alized separable solutions, several concrete examples defined on the exponential and trigonometric invariant subspaces are provided.
基金supported by NSFC(11471260)the Foundation of Shannxi Education Committee(12JK0850)
文摘Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Furthermore, blow up and behavior of those exact solutions are also investigated.
基金Project supported by the National Natural Science Foundation of China(Grant No.10671156)the Natural Science Foundation of Shaanxi Province of China(Grant No.SJ08A05)
文摘By using the approximate derivative-dependent functional variable separation approach, we study the quasi-linear diffusion equations with a weak source ut = (A(u)Ux)x + eB(u, Ux). A complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is listed. As a consequence, some approxi- mate solutions to the resulting perturbed equations are constructed via examples.
基金supported by the State Administration of Foreign Experts Affairs of China,National Natural Science Foundation of China (Grant Nos. 10971136,10831003,61072147,11071159)Chunhui Plan of the Ministry of Education of China,Zhejiang Innovation Project (Grant No. T200905)the Natural Science Foundation of Shanghai and the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations is analyzed to shed light oi1 the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differentii equations and their corresponding exact solutions with generalized separated variables.
基金supported by National Natural Science Foundation of China for Distinguished Young Scholars(Grant No.10925104)the PhD Programs Foundation of Ministry of Education of China(Grant No.20106101110008)the United Funds of NSFC and Henan for Talent Training(Grant No.U1204104)
文摘The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonlinear ordinary differential equations, which is equivalent to a kind of higher=order conditional Lie-B^icklund symmetries of the equations. As a consequence, a number of new solutions to the inhomogeneous nonlinear diffusion equations are constructed explicitly or reduced to solving finite-dimensional dynamical sys- tems.
基金supported by the National Natural Science Foundation of China(Grant Nos.61176103,91323304)the National High-Tech Research and Development Program of China("863"Project)(Grant No.2013AA041102)the Beijing Natural Science Foundation of China(Grant No.4141002)
文摘Recently, triboelectric generator(TEG) has attracted a lot of attention due to its high output voltage and low-cost fabrication process. Here, a novel cubic TEG box is designed, which has separated electrodes on different surfaces. Thanks to the specially designed structure, it can scavenge vibration energy from all directions. Firstly the device is investigated through finite element method(FEM) simulation. Then the device is evaluated by experiments. The measuremental results show that this device can generate an amount of 25 n C charge during once shake by charging a 10 n F capacitor. Besides, an output voltage about 100 V is obtained, which is able to directly light up several light-emitting diodes(LEDs) simultaneously. At last, the device is utilized as a self-powered orientation sensor, which shows explicit directivity. This work extends the applications of TEG for ambient vibration energy harvesting techniques and the self-powered orientation sensor.