Generalized short circuit ratio(g SCR)for grid strength assessment of multi-infeed high-voltage direct current(MIDC)systems is a rigorous theoretical extension of the traditional SCR,which enables SCR to be extended t...Generalized short circuit ratio(g SCR)for grid strength assessment of multi-infeed high-voltage direct current(MIDC)systems is a rigorous theoretical extension of the traditional SCR,which enables SCR to be extended to MIDC systems.However,g SCR is originally based on the assumption of homogeneous MIDC systems,in which all high-voltage direct current(HVDC)converters have an identical control configuration,thus presenting challenges to applications of g SCR to inhomogeneous MIDC systems.To weaken this assumption,this paper applies matrix perturbation theory to explore the possibility of utilization of g SCR into inhomogeneous MIDC systems.Results of numerical experiments show that in inhomogeneous MIDC systems,the previously proposed g SCR can still be used without modification.However,critical g SCR(Cg SCR)must be redefined by considering the characteristics of control configurations of HVDC converter.Accordingly,the difference between g SCR and redefined Cg SCR can effectively quantify the pertinent AC grid strength in terms of the static-voltage stability margin.The performance of the proposed method is demonstrated in a triple-infeed inhomogeneous line commutated converter based high-voltage direct current(LCC-HVDC)system.展开更多
分析了静态电压稳定和多馈入系统短路比的联系,从特征根的角度探索了一种刻画交直流系统强度和稳定性的多馈入系统广义短路比(generalized short circuit ratio,GSCR)指标,克服了传统短路比概念在多馈入下物理机理不明确及对交流系统强...分析了静态电压稳定和多馈入系统短路比的联系,从特征根的角度探索了一种刻画交直流系统强度和稳定性的多馈入系统广义短路比(generalized short circuit ratio,GSCR)指标,克服了传统短路比概念在多馈入下物理机理不明确及对交流系统强度刻画不准确的缺陷,实现了短路比概念在单馈入和多馈入下物理意义及数学形式上的统一。GSCR是在较弱的假定条件下定义,因此具有一般性。理论证明GSCR唯一存在且不小于最小多馈入短路比,而传统短路比仅是GSCR在附加较强假设条件后的一个特例。仿真算例表明新定义下的GSCR能更准确地描述多馈入系统受端交流电网的强度。展开更多
基金jointly supported by the National Natural Science Foundation of China(No.52007163)China Postdoctoral Science Foundation(No.2020M671718)。
文摘Generalized short circuit ratio(g SCR)for grid strength assessment of multi-infeed high-voltage direct current(MIDC)systems is a rigorous theoretical extension of the traditional SCR,which enables SCR to be extended to MIDC systems.However,g SCR is originally based on the assumption of homogeneous MIDC systems,in which all high-voltage direct current(HVDC)converters have an identical control configuration,thus presenting challenges to applications of g SCR to inhomogeneous MIDC systems.To weaken this assumption,this paper applies matrix perturbation theory to explore the possibility of utilization of g SCR into inhomogeneous MIDC systems.Results of numerical experiments show that in inhomogeneous MIDC systems,the previously proposed g SCR can still be used without modification.However,critical g SCR(Cg SCR)must be redefined by considering the characteristics of control configurations of HVDC converter.Accordingly,the difference between g SCR and redefined Cg SCR can effectively quantify the pertinent AC grid strength in terms of the static-voltage stability margin.The performance of the proposed method is demonstrated in a triple-infeed inhomogeneous line commutated converter based high-voltage direct current(LCC-HVDC)system.
文摘分析了静态电压稳定和多馈入系统短路比的联系,从特征根的角度探索了一种刻画交直流系统强度和稳定性的多馈入系统广义短路比(generalized short circuit ratio,GSCR)指标,克服了传统短路比概念在多馈入下物理机理不明确及对交流系统强度刻画不准确的缺陷,实现了短路比概念在单馈入和多馈入下物理意义及数学形式上的统一。GSCR是在较弱的假定条件下定义,因此具有一般性。理论证明GSCR唯一存在且不小于最小多馈入短路比,而传统短路比仅是GSCR在附加较强假设条件后的一个特例。仿真算例表明新定义下的GSCR能更准确地描述多馈入系统受端交流电网的强度。