Instead of the usual Hirota ansatz,i.e.,the functions in bilinear equations being chosen as exponentialtypes,a generalized Hirota ansatz is proposed for a (3+1)-dimensional nonlinear evolution equation.Based on theres...Instead of the usual Hirota ansatz,i.e.,the functions in bilinear equations being chosen as exponentialtypes,a generalized Hirota ansatz is proposed for a (3+1)-dimensional nonlinear evolution equation.Based on theresulting generalized Hirota ansatz,a family of new explicit solutions for the equation are derived.展开更多
In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution ...In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.展开更多
In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzent...In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.展开更多
We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional sep...We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional separable solution. The new definitions can unify various kinds of variable separable solutions appearing in references. As application, we classify the generalized nonlinear diffusion equations that admit special functional separable solutions and obtain some exact solutions to the resulting equations.展开更多
The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via th...The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via their A GCSs is illustrated with examples.展开更多
We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits de...We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits derivative-dependent functional separable solutions (DDFSSs) and illustrate how to construct those DDFSSs with some examples.展开更多
In this paper,we utilize the exp(−ϕ(ξ))-expansion method to find exact and solitary wave solutions of the generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation.The generalized Zakharov-Kuzn...In this paper,we utilize the exp(−ϕ(ξ))-expansion method to find exact and solitary wave solutions of the generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation.The generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation describes the model for the propagation of long waves that mingle with nonlinear and dissipative impact.This model is used in the analysis of the surface waves of long wavelength in hydro magnetic waves in cold plasma,liquids,acoustic waves in harmonic crystals and acoustic-gravity waves in compressible fluids.By using this method,seven different kinds of traveling wave solutions are successfully obtained for this model.The considered method and transformation techniques are efficient and consistent for solving nonlinear evolution equations and obtain exact solutions that are applied to the science and engineering fields.展开更多
In this paper,a new(3+1)-dimensional nonlinear evolution equation is introduced,through the generalized bilinear operators based on prime number p=3.By Maple symbolic calculation,one-,two-lump,and breather-type period...In this paper,a new(3+1)-dimensional nonlinear evolution equation is introduced,through the generalized bilinear operators based on prime number p=3.By Maple symbolic calculation,one-,two-lump,and breather-type periodic soliton solutions are obtained,where the condition of positiveness and analyticity of the lump solution are considered.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and breather-type periodic soliton are derived,by combining multi-exponential function or trigonometric sine and cosine functions with a quadratic one.In addition,new interaction solutions between a lump,periodic-solitary waves,and one-,two-or even three-kink solitons are constructed by using the ansatz technique.Finally,the characteristics of these various solutions are exhibited and illustrated graphically.展开更多
In this article,we establish solitary wave solutions to the Estevez-MansfieldClarkson(EMC)equation and the coupled sine-Gordon equations which are model equations to analyze the formation of shapes in liquid drops,su...In this article,we establish solitary wave solutions to the Estevez-MansfieldClarkson(EMC)equation and the coupled sine-Gordon equations which are model equations to analyze the formation of shapes in liquid drops,surfaces of negative constant curvature,etc.through contriving the generalized Kudryashov method.The extracted results introduce several types’solitary waves,such as the kink soliton,bell-shape soliton,compacton,singular soliton,peakon and other sort of soliton for distinct valuation of the unknown parameters.The achieved analytic solutions are interpreted in details and their 2D and 3D graphs are sketched.The obtained solutions and the physical structures explain the soliton phenomenon and reproduce the dynamic properties of the front of the travelling wave deformation generated in the dispersive media.It shows that the generalized Kudryashov method is powerful,compatible and might be used in further works to found novel solutions for other types of nonlinear evolution equations ascending in physical science and engineering.展开更多
文摘Instead of the usual Hirota ansatz,i.e.,the functions in bilinear equations being chosen as exponentialtypes,a generalized Hirota ansatz is proposed for a (3+1)-dimensional nonlinear evolution equation.Based on theresulting generalized Hirota ansatz,a family of new explicit solutions for the equation are derived.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675084 and 11435005)the Fund from the Educational Commission of Zhejiang Province,China(Grant No.Y201737177)+1 种基金Ningbo Natural Science Foundation(Grant No.2015A610159)the K C Wong Magna Fund in Ningbo University
文摘In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University (Grant No QN005023).
文摘In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10447007 and 10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional separable solution. The new definitions can unify various kinds of variable separable solutions appearing in references. As application, we classify the generalized nonlinear diffusion equations that admit special functional separable solutions and obtain some exact solutions to the resulting equations.
基金The project supported by National Natural Science Foundation of China under Grant No. 10447007, the China Postdoctoral Science Foundation, and the Natural Science Foundation of Shanxi Province under Grant No. 2005A13
文摘The concept of approximate generalized conditional symmetry (AGCS) for the perturbed evolution equations is introduced, and how to derive approximate conditional invariant solutions to the perturbed equations via their A GCSs is illustrated with examples.
基金National Natural Science Foundation of China under Grant Nos.10447007 and 10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits derivative-dependent functional separable solutions (DDFSSs) and illustrate how to construct those DDFSSs with some examples.
文摘In this paper,we utilize the exp(−ϕ(ξ))-expansion method to find exact and solitary wave solutions of the generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation.The generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation describes the model for the propagation of long waves that mingle with nonlinear and dissipative impact.This model is used in the analysis of the surface waves of long wavelength in hydro magnetic waves in cold plasma,liquids,acoustic waves in harmonic crystals and acoustic-gravity waves in compressible fluids.By using this method,seven different kinds of traveling wave solutions are successfully obtained for this model.The considered method and transformation techniques are efficient and consistent for solving nonlinear evolution equations and obtain exact solutions that are applied to the science and engineering fields.
基金supported by the National Natural Science Foundation of China No.11835011 and No.11675146。
文摘In this paper,a new(3+1)-dimensional nonlinear evolution equation is introduced,through the generalized bilinear operators based on prime number p=3.By Maple symbolic calculation,one-,two-lump,and breather-type periodic soliton solutions are obtained,where the condition of positiveness and analyticity of the lump solution are considered.The interaction solutions between the lump and multi-kink soliton,and the interaction between the lump and breather-type periodic soliton are derived,by combining multi-exponential function or trigonometric sine and cosine functions with a quadratic one.In addition,new interaction solutions between a lump,periodic-solitary waves,and one-,two-or even three-kink solitons are constructed by using the ansatz technique.Finally,the characteristics of these various solutions are exhibited and illustrated graphically.
基金the Research Grant No.:A-1220/5/52/RU/Science-37/2019-2020 and the authors acknowledge this support.
文摘In this article,we establish solitary wave solutions to the Estevez-MansfieldClarkson(EMC)equation and the coupled sine-Gordon equations which are model equations to analyze the formation of shapes in liquid drops,surfaces of negative constant curvature,etc.through contriving the generalized Kudryashov method.The extracted results introduce several types’solitary waves,such as the kink soliton,bell-shape soliton,compacton,singular soliton,peakon and other sort of soliton for distinct valuation of the unknown parameters.The achieved analytic solutions are interpreted in details and their 2D and 3D graphs are sketched.The obtained solutions and the physical structures explain the soliton phenomenon and reproduce the dynamic properties of the front of the travelling wave deformation generated in the dispersive media.It shows that the generalized Kudryashov method is powerful,compatible and might be used in further works to found novel solutions for other types of nonlinear evolution equations ascending in physical science and engineering.