This paper studies the non-homogeneous generalized Riemann-Hilbert(RH)problems involving two unknown functions.Using the uniformization theorem,such problems are transformed into the case of homogeneous type.By the th...This paper studies the non-homogeneous generalized Riemann-Hilbert(RH)problems involving two unknown functions.Using the uniformization theorem,such problems are transformed into the case of homogeneous type.By the theory of classical boundary value problems,we adopt a novel method to obtain the sectionally analytic solutions of problems in strip domains,and analyze the conditions of solvability and properties of solutions in various domains.展开更多
We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of ...We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.展开更多
Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural netwo...Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural network based on a generative adversarial network(GAN).The generator employs a U-Net-based network,which integrates Dense Net for the downsampling component.The proposed method has excellent properties,for example,the network model is trained with several different datasets of biological structures;the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging;and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets.In addition,experimental results showed that the method improved the resolution of caveolin-coated pits(CCPs)structures from 264 nm to 138 nm,a 1.91-fold increase,and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.展开更多
The main objective of this study is to nd novel wave solutions for the time-fractional generalized Rosenau-Kawahara-RLW equation,which occurs in unidirectional water wave prop-agation.The generalized Rosenau-Kawahara-...The main objective of this study is to nd novel wave solutions for the time-fractional generalized Rosenau-Kawahara-RLW equation,which occurs in unidirectional water wave prop-agation.The generalized Rosenau-Kawahara-RLW equation comprises three equations Rosenau equation,Kawahara equation,RLW equation and also p-th order nonlinear term.All these equations describe the wave phenomena especially the wave-wave and wave-wall interactions in shallow and narrow channel waters.The auxiliary equation method is employed to get the analytical results.展开更多
In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, ...In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain...Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.展开更多
The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are ...The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.展开更多
Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge t...Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge transformation of the matrix spectral problem, one kind of Darboux transformation with multi-parameters for the three-component coupled Fokas–Lenells system is constructed. As a reduction, the N-fold Darboux transformation for the generalized Fokas–Lenells equation is obtained, from which the N-soliton solution in a compact Vandermonde-like determinant form is given. Particularly,the explicit one-and two-soliton solutions are presented and their dynamical behaviors are shown graphically.展开更多
We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
In this paper, we prove the uniqueness of generalized solution defined by Lebesgue-Stieltjes integral for the Cauchy problem of transportation equations. Our results are based on the discussions for linear system with...In this paper, we prove the uniqueness of generalized solution defined by Lebesgue-Stieltjes integral for the Cauchy problem of transportation equations. Our results are based on the discussions for linear system with discontinuous coefficient.展开更多
In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constrain...In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constraint f_(R)^N u^2dx=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.展开更多
In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzent...In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.展开更多
The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutio...The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutionsof the Z-K equation are obtained.The methods used to solve the Z-K equation can be employed in further work toestablish new solutions for other nonlinear partial differential equations.展开更多
We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global min...We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global minimum.Then,we use the variational method and some analytical techniques to obtain the existence of the positive solution of the equation whenλis small enough.展开更多
Two types of symmetry of a generalized Zakharov-Kuznetsov equation are obtained via a direct symmetry method. By selecting suitable parameters occurring in the symmetries, we also find some symmetry reductions and new...Two types of symmetry of a generalized Zakharov-Kuznetsov equation are obtained via a direct symmetry method. By selecting suitable parameters occurring in the symmetries, we also find some symmetry reductions and new explicit solutions of the generalized Zakharov-Kuznetsov equation.展开更多
In this paper, the generalized Dodd-Bullough-Mikhailov equation is studied. The existence of periodic wave and unbounded wave solutions is proved by using the method of bifurcation theory of dynamical systems. Under d...In this paper, the generalized Dodd-Bullough-Mikhailov equation is studied. The existence of periodic wave and unbounded wave solutions is proved by using the method of bifurcation theory of dynamical systems. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given.Some exact explicit parametric representations of the above travelling solutions are obtained.展开更多
Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer alg...Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.展开更多
It is obtained the existence of the weak solution for a degenerate generalized Burgers equation under the restriction u0 ∈ L∞. The main method is to add viscosity perturbation and obtain some estimates in L1 norm. M...It is obtained the existence of the weak solution for a degenerate generalized Burgers equation under the restriction u0 ∈ L∞. The main method is to add viscosity perturbation and obtain some estimates in L1 norm. Meanwhile it is obtained the solution is exponential decay when the initial data has compact support.展开更多
Using the solution of general Korteweg-de Vries (KdV) equation, the solutions of the generalized variable coefficient Kadomtsev-Petviashvili (KP) equation are constructed, and then its new solitary wave-like solut...Using the solution of general Korteweg-de Vries (KdV) equation, the solutions of the generalized variable coefficient Kadomtsev-Petviashvili (KP) equation are constructed, and then its new solitary wave-like solution and Jacobi elliptic function solution are obtained.展开更多
Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Further...Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Furthermore, blow up and behavior of those exact solutions are also investigated.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.11971015).
文摘This paper studies the non-homogeneous generalized Riemann-Hilbert(RH)problems involving two unknown functions.Using the uniformization theorem,such problems are transformed into the case of homogeneous type.By the theory of classical boundary value problems,we adopt a novel method to obtain the sectionally analytic solutions of problems in strip domains,and analyze the conditions of solvability and properties of solutions in various domains.
文摘We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.
基金Subjects funded by the National Natural Science Foundation of China(Nos.62275216 and 61775181)the Natural Science Basic Research Programme of Shaanxi Province-Major Basic Research Special Project(Nos.S2018-ZC-TD-0061 and TZ0393)the Special Project for the Development of National Key Scientific Instruments and Equipment No.(51927804).
文摘Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural network based on a generative adversarial network(GAN).The generator employs a U-Net-based network,which integrates Dense Net for the downsampling component.The proposed method has excellent properties,for example,the network model is trained with several different datasets of biological structures;the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging;and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets.In addition,experimental results showed that the method improved the resolution of caveolin-coated pits(CCPs)structures from 264 nm to 138 nm,a 1.91-fold increase,and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.
文摘The main objective of this study is to nd novel wave solutions for the time-fractional generalized Rosenau-Kawahara-RLW equation,which occurs in unidirectional water wave prop-agation.The generalized Rosenau-Kawahara-RLW equation comprises three equations Rosenau equation,Kawahara equation,RLW equation and also p-th order nonlinear term.All these equations describe the wave phenomena especially the wave-wave and wave-wall interactions in shallow and narrow channel waters.The auxiliary equation method is employed to get the analytical results.
文摘In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.
文摘The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12326305,11931017,and 12271490)the Excellent Youth Science Fund Project of Henan Province(Grant No.242300421158)+2 种基金the Natural Science Foundation of Henan Province(Grant No.232300420119)the Excellent Science and Technology Innovation Talent Support Program of ZUT(Grant No.K2023YXRC06)Funding for the Enhancement Program of Advantageous Discipline Strength of ZUT(2022)。
文摘Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge transformation of the matrix spectral problem, one kind of Darboux transformation with multi-parameters for the three-component coupled Fokas–Lenells system is constructed. As a reduction, the N-fold Darboux transformation for the generalized Fokas–Lenells equation is obtained, from which the N-soliton solution in a compact Vandermonde-like determinant form is given. Particularly,the explicit one-and two-soliton solutions are presented and their dynamical behaviors are shown graphically.
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
文摘In this paper, we prove the uniqueness of generalized solution defined by Lebesgue-Stieltjes integral for the Cauchy problem of transportation equations. Our results are based on the discussions for linear system with discontinuous coefficient.
基金supported by the NSFC(12271184)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J10001).
文摘In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constraint f_(R)^N u^2dx=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University (Grant No QN005023).
文摘In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.
基金Supported by the National Natural Science Foundation of China under Grant No.10974160
文摘The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutionsof the Z-K equation are obtained.The methods used to solve the Z-K equation can be employed in further work toestablish new solutions for other nonlinear partial differential equations.
文摘We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global minimum.Then,we use the variational method and some analytical techniques to obtain the existence of the positive solution of the equation whenλis small enough.
基金The project supported by Natural Science Foundation of Shandong Province of China under Grant 2004 zx 16The authors would like to thank professor Bai Cheng-Lin and the referees for their valuable advices.
文摘Two types of symmetry of a generalized Zakharov-Kuznetsov equation are obtained via a direct symmetry method. By selecting suitable parameters occurring in the symmetries, we also find some symmetry reductions and new explicit solutions of the generalized Zakharov-Kuznetsov equation.
基金Supported by the NNSF of China(60464001) Guangxi Science Foundation(0575092).
文摘In this paper, the generalized Dodd-Bullough-Mikhailov equation is studied. The existence of periodic wave and unbounded wave solutions is proved by using the method of bifurcation theory of dynamical systems. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given.Some exact explicit parametric representations of the above travelling solutions are obtained.
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the National Key Basic Research Development Program under Grant No.G1998030600
文摘Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.
文摘It is obtained the existence of the weak solution for a degenerate generalized Burgers equation under the restriction u0 ∈ L∞. The main method is to add viscosity perturbation and obtain some estimates in L1 norm. Meanwhile it is obtained the solution is exponential decay when the initial data has compact support.
文摘Using the solution of general Korteweg-de Vries (KdV) equation, the solutions of the generalized variable coefficient Kadomtsev-Petviashvili (KP) equation are constructed, and then its new solitary wave-like solution and Jacobi elliptic function solution are obtained.
基金supported by NSFC(11471260)the Foundation of Shannxi Education Committee(12JK0850)
文摘Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Furthermore, blow up and behavior of those exact solutions are also investigated.