We report results on electronic, transport, and bulk properties of rock-salt magnesium selenide (MgSe), from density functional theory (DFT) calculations. We utilized a local density approximation (LDA) potential and ...We report results on electronic, transport, and bulk properties of rock-salt magnesium selenide (MgSe), from density functional theory (DFT) calculations. We utilized a local density approximation (LDA) potential and the linear combination of atomic orbitals formalism (LCAO). We followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), to perform a generalized minimization of the energy, down to the actual ground state of the material. We describe the successive, self-consistent calculations, with augmented basis sets, that are needed for this generalized minimization. Due to the generalized minimization, our results have the full, physical content of DFT, as per the second DFT theorem [AIP Advances, 4, 127104 (2014)]. Our calculated, indirect bandgap of 2.49 eV, for a room temperature lattice constant of 5.460 <span style="white-space:nowrap;">Å</span>, agrees with experimental findings. We present the ground-state band structure, the related total and partial densities of states, DOS and PDOS, respectively, and electron and hole effective masses for the material. Our calculated bulk modulus of 63.1 GPa is in excellent agreement with the experimental value of 62.8 ± 1.6 GPa. Our predicted equilibrium lattice constant, at zero temperature, is 5.424 <span style="white-space:nowrap;">Å</span>, with a corresponding indirect bandgap of 2.51 eV. We discuss the reasons for the agreements between our findings and available, corresponding, experimental ones, particularly for the band gap, unlike the previous DFT results obtained with ab-initio LDA or GGA potentials.展开更多
Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole en...Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.展开更多
Thermal neutron inelastic scattering experiments have been successfully used tostudy the lattice dynamics of the classical crystalline invar alloys. Y. Endoh et al. havesystematically investigated the temperature depe...Thermal neutron inelastic scattering experiments have been successfully used tostudy the lattice dynamics of the classical crystalline invar alloys. Y. Endoh et al. havesystematically investigated the temperature dependence of the phonon dispersion forthe Fe-based crystalline invar alloys Fe<sub>65</sub>Ni<sub>35</sub>, Fe<sub>3</sub>Pt and Fe<sub>70</sub>Mn<sub>30</sub> by inelasticneutron scattering, and found that the transverse acoustic-phonon modes become softbelow the magnetic transition temperature. It is suggested that the phonon softeningof these invar alloys may be attributed to the enhancement of展开更多
文摘We report results on electronic, transport, and bulk properties of rock-salt magnesium selenide (MgSe), from density functional theory (DFT) calculations. We utilized a local density approximation (LDA) potential and the linear combination of atomic orbitals formalism (LCAO). We followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), to perform a generalized minimization of the energy, down to the actual ground state of the material. We describe the successive, self-consistent calculations, with augmented basis sets, that are needed for this generalized minimization. Due to the generalized minimization, our results have the full, physical content of DFT, as per the second DFT theorem [AIP Advances, 4, 127104 (2014)]. Our calculated, indirect bandgap of 2.49 eV, for a room temperature lattice constant of 5.460 <span style="white-space:nowrap;">Å</span>, agrees with experimental findings. We present the ground-state band structure, the related total and partial densities of states, DOS and PDOS, respectively, and electron and hole effective masses for the material. Our calculated bulk modulus of 63.1 GPa is in excellent agreement with the experimental value of 62.8 ± 1.6 GPa. Our predicted equilibrium lattice constant, at zero temperature, is 5.424 <span style="white-space:nowrap;">Å</span>, with a corresponding indirect bandgap of 2.51 eV. We discuss the reasons for the agreements between our findings and available, corresponding, experimental ones, particularly for the band gap, unlike the previous DFT results obtained with ab-initio LDA or GGA potentials.
基金Youth Scientific Foundation of Sichuan Education Department,国家自然科学基金
文摘Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.
文摘Thermal neutron inelastic scattering experiments have been successfully used tostudy the lattice dynamics of the classical crystalline invar alloys. Y. Endoh et al. havesystematically investigated the temperature dependence of the phonon dispersion forthe Fe-based crystalline invar alloys Fe<sub>65</sub>Ni<sub>35</sub>, Fe<sub>3</sub>Pt and Fe<sub>70</sub>Mn<sub>30</sub> by inelasticneutron scattering, and found that the transverse acoustic-phonon modes become softbelow the magnetic transition temperature. It is suggested that the phonon softeningof these invar alloys may be attributed to the enhancement of