By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equi...By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equilibrium existence theorems, some new existence theorems of solutions for the system of generalized vector quasi-equilibrium problems are established in noncompact product FC-spaces. These results improve and generalize some recent results in literature to product FC-spaces without any convexity structure.展开更多
Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector...Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.展开更多
The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for ...The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for a parametric generalized strong vector equilibrium problem. By virtue of a nonlinear scalarization technique, a new density result of the solution mapping is obtained. Based on the density result, we give sufficient conditions for the lower semicontinuity and the Hausdorff upper semicontinuity of the solution mapping to the parametric generalized strong vector equilibrium problem. In addition, some examples were given to illustrate that our results improve ones in the literature.展开更多
In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters a...In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters are investigated.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established...By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.展开更多
In this article, we study Levitin-Polyak type well-posedness for generalized vector equilibrium problems with abstract and functional constraints. Criteria and characterizations for these types of well-posednesses are...In this article, we study Levitin-Polyak type well-posedness for generalized vector equilibrium problems with abstract and functional constraints. Criteria and characterizations for these types of well-posednesses are given.展开更多
A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for q...A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for quasi-equilibrium problems are proved in noncompact generalized convex spaces. Then, ar applications of the quasi-equilibrium existence theorem, several existence theorems of weighted Nash-equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact generalized convex spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literatures.展开更多
By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence re...By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence result of essential components in the solution set is derived.展开更多
In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of non...In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of nonexpansive mappings. Furthermore, we show a strong convergence theorem under some mild conditions.展开更多
By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize ...By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize a number of important known results in recent literature.展开更多
In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasico...In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasiconvex, Ci(x)-FC-quasiconvex, and Ci(x)-FC- quasiconvex-like for set-valued mappings are also introduced in FC-spaces. By applying these notions and a maximal element theorem, the nonemptyness and compactness of solution sets for four classes of systems of generalized vector quasi-equilibrium problems are proved in noncompact FC-spaces. As applications, some new existence theorems of solutions for mathematical programs with system of generalized vector quasi-equilibrium constraints are obtained in FC-spaces. These results improve and generalize some recent known results in literature.展开更多
By a coincidence theorem, some existence theorems of solutions are proved for four types of generalized vector equilibrium problems with moving cones. Applications to the generalized semi-infinite programs with the ge...By a coincidence theorem, some existence theorems of solutions are proved for four types of generalized vector equilibrium problems with moving cones. Applications to the generalized semi-infinite programs with the generalized vector equilibrium constraints under the mild conditions are also given. The results of this paper unify and improve the corresponding results in the previous literature.展开更多
A new system of vector quasi-equilibrium problems is introduced and its existence of solution is proved. As applications, some existence results of weak Pareto equilibrium for both constrained multicriteria games and ...A new system of vector quasi-equilibrium problems is introduced and its existence of solution is proved. As applications, some existence results of weak Pareto equilibrium for both constrained multicriteria games and multicriteria games without constrained correspondences are also shown.展开更多
A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems...A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems and generalized mixed implicit quasi-variational inequality problems as many special cases. By employing the auxiliary principle technique, some predictor-corrector iterative algorithms for solving the GMIQEP are suggested and analyzed. The convergence of the suggested algorithm only requires the continuity and the partially relaxed implicit strong monotonicity of the mappings展开更多
In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-...In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.展开更多
In this works, by using the modified viscosity approximation method associated with Meir-Keeler contractions, we proved the convergence theorem for solving the fixed point problem of a nonexpansive semigroup and gener...In this works, by using the modified viscosity approximation method associated with Meir-Keeler contractions, we proved the convergence theorem for solving the fixed point problem of a nonexpansive semigroup and generalized mixed equilibrium problems in Hilbert spaces.展开更多
This paper uses a hybrid algorithm to find a common element of the set of solutions to a generalized mixed equilibrium problem, the set of solutions to variational inequality problems, and the set of common fixed poin...This paper uses a hybrid algorithm to find a common element of the set of solutions to a generalized mixed equilibrium problem, the set of solutions to variational inequality problems, and the set of common fixed points for a finite family of quasi-C- nonexpansive mappings in a uniformly smooth and strictly convex Banach space. As applications, we utilize our results to study the optimization problem. It shows that our results improve and extend the corresponding results announced by many others recently.展开更多
A quasi-variational inequality is proved in paracompact setting which generalizes the results of Zhou Chen andAubin. As applications, two existence theorems on the solutions of optimization problems and social equilib...A quasi-variational inequality is proved in paracompact setting which generalizes the results of Zhou Chen andAubin. As applications, two existence theorems on the solutions of optimization problems and social equilibria ofmetagames are showed which improve and extend the recent results of Kaczynski-Zeidan and Aubin.展开更多
The generalized Nash equilibrium problem (GNEP) is a generalization of the standard Nash equilibrium problem (NEP), in which both the utility function and the strategy space of each player depend on the strategies...The generalized Nash equilibrium problem (GNEP) is a generalization of the standard Nash equilibrium problem (NEP), in which both the utility function and the strategy space of each player depend on the strategies chosen by all other players. This problem has been used to model various problems in applications. However, the convergent solution algorithms are extremely scare in the literature. In this paper, we present an incremental penalty method for the GNEP, and show that a solution of the GNEP can be found by solving a sequence of smooth NEPs. We then apply the semismooth Newton method with Armijo line search to solve latter problems and provide some results of numerical experiments to illustrate the proposed approach.展开更多
基金This project was supported by the NSF of Sichuan Education of China(2003A081)and SZD0406
文摘By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equilibrium existence theorems, some new existence theorems of solutions for the system of generalized vector quasi-equilibrium problems are established in noncompact product FC-spaces. These results improve and generalize some recent results in literature to product FC-spaces without any convexity structure.
文摘Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.
文摘The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for a parametric generalized strong vector equilibrium problem. By virtue of a nonlinear scalarization technique, a new density result of the solution mapping is obtained. Based on the density result, we give sufficient conditions for the lower semicontinuity and the Hausdorff upper semicontinuity of the solution mapping to the parametric generalized strong vector equilibrium problem. In addition, some examples were given to illustrate that our results improve ones in the literature.
基金The NSF(10871226) of Chinathe NSF(ZR2009AL006) of Shandong Province
文摘In this paper, two kinds of parametric generalized vector quasi-equilibrium problems are introduced and the relations between them are studied. The upper and lower semicontinuity of their solution sets to parameters are investigated.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
文摘By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
基金supported by the National Science Foundation of China and Shanghai Pujian Program
文摘In this article, we study Levitin-Polyak type well-posedness for generalized vector equilibrium problems with abstract and functional constraints. Criteria and characterizations for these types of well-posednesses are given.
文摘A class of quasi-equilibrium problems and a class of constrained multiobjective games were introduced and studied in generalized convex spaces without linear structure. First, two existence theorems of solutions for quasi-equilibrium problems are proved in noncompact generalized convex spaces. Then, ar applications of the quasi-equilibrium existence theorem, several existence theorems of weighted Nash-equilibria and Pareto equilibria for the constrained multiobjective games are established in noncompact generalized convex spaces. These theorems improve, unify, and generalize the corresponding results of the multiobjective games in recent literatures.
基金Supported by NSF of Chongqing and Science Foundations of Chongqing Jia1otong University
文摘By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence result of essential components in the solution set is derived.
文摘In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of nonexpansive mappings. Furthermore, we show a strong convergence theorem under some mild conditions.
文摘By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize a number of important known results in recent literature.
基金supported by the Scientific Research Fun of Sichuan Normal University (09ZDL04)the Sichuan Province Leading Academic Discipline Project (SZD0406)
文摘In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasiconvex, Ci(x)-FC-quasiconvex, and Ci(x)-FC- quasiconvex-like for set-valued mappings are also introduced in FC-spaces. By applying these notions and a maximal element theorem, the nonemptyness and compactness of solution sets for four classes of systems of generalized vector quasi-equilibrium problems are proved in noncompact FC-spaces. As applications, some new existence theorems of solutions for mathematical programs with system of generalized vector quasi-equilibrium constraints are obtained in FC-spaces. These results improve and generalize some recent known results in literature.
基金Project supported by the Key Program of the National Natural Science Foundation of China(NSFC)(No.70831005)the National Natural Science Foundation of China(Nos.11171237,11226228,and 11201214)+1 种基金the Science and Technology Program Project of Henan Province of China(No.122300410256)the Natural Science Foundation of Henan Education Department of China(No.2011B110025)
文摘By a coincidence theorem, some existence theorems of solutions are proved for four types of generalized vector equilibrium problems with moving cones. Applications to the generalized semi-infinite programs with the generalized vector equilibrium constraints under the mild conditions are also given. The results of this paper unify and improve the corresponding results in the previous literature.
基金Project supported by the National Natural Science Foundation of China (Nos.10171118 and 70432001) the Applied Basic Research Foundation of Chongqing(No.030801) the Natural Science Foundation of Chongqing(No.8409) and the Postdoctoral Science Foundation of China
文摘A new system of vector quasi-equilibrium problems is introduced and its existence of solution is proved. As applications, some existence results of weak Pareto equilibrium for both constrained multicriteria games and multicriteria games without constrained correspondences are also shown.
基金Project supported by the Natural Science Foundation of Sichuan Educational Commission (No.2003A081)
文摘A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems and generalized mixed implicit quasi-variational inequality problems as many special cases. By employing the auxiliary principle technique, some predictor-corrector iterative algorithms for solving the GMIQEP are suggested and analyzed. The convergence of the suggested algorithm only requires the continuity and the partially relaxed implicit strong monotonicity of the mappings
基金supported by the Natural Science Foundation of Sichuan Education Department of China(No. 07ZA092)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘In this paper, we introduce some new systems of generalized vector quasi-variational inclusion problems and system of generalized vector ideal (resp., proper, Pareto, weak) quasi-optimization problems in locally FC-uniform spaces without convexity structure. By using the KKM type theorem and Himmelberg type fixed point theorem proposed by the author, some new existence theorems of solutions for the systems of generalized vector quasi-variational inclusion problems are proved. As to its applications, we obtain some existence results of solutions for systems of generalized vector quasi-optimization problems.
文摘In this works, by using the modified viscosity approximation method associated with Meir-Keeler contractions, we proved the convergence theorem for solving the fixed point problem of a nonexpansive semigroup and generalized mixed equilibrium problems in Hilbert spaces.
基金supported by the Natural Science Foundation of Yibin University (No. 2009Z003)
文摘This paper uses a hybrid algorithm to find a common element of the set of solutions to a generalized mixed equilibrium problem, the set of solutions to variational inequality problems, and the set of common fixed points for a finite family of quasi-C- nonexpansive mappings in a uniformly smooth and strictly convex Banach space. As applications, we utilize our results to study the optimization problem. It shows that our results improve and extend the corresponding results announced by many others recently.
文摘A quasi-variational inequality is proved in paracompact setting which generalizes the results of Zhou Chen andAubin. As applications, two existence theorems on the solutions of optimization problems and social equilibria ofmetagames are showed which improve and extend the recent results of Kaczynski-Zeidan and Aubin.
文摘The generalized Nash equilibrium problem (GNEP) is a generalization of the standard Nash equilibrium problem (NEP), in which both the utility function and the strategy space of each player depend on the strategies chosen by all other players. This problem has been used to model various problems in applications. However, the convergent solution algorithms are extremely scare in the literature. In this paper, we present an incremental penalty method for the GNEP, and show that a solution of the GNEP can be found by solving a sequence of smooth NEPs. We then apply the semismooth Newton method with Armijo line search to solve latter problems and provide some results of numerical experiments to illustrate the proposed approach.