In this paper, we introduce a split generalized equilibrium problem and consider some iterative sequences to find a solution of the equilibrium problem such that its image under a given bounded linear operator is a so...In this paper, we introduce a split generalized equilibrium problem and consider some iterative sequences to find a solution of the equilibrium problem such that its image under a given bounded linear operator is a solution of another equilibrium problem. We obtain some strong and weak convergence theorems.展开更多
白中治等提出了解非埃尔米特正定线性方程组的埃尔米特和反埃尔米特分裂(HSS)迭代方法(Bai Z Z,Golub G H,Ng M K.Hermitian and skew-Hermitian splitting methodsfor non-Hermitian positive definite linear systems.SIAM J.Matrix A...白中治等提出了解非埃尔米特正定线性方程组的埃尔米特和反埃尔米特分裂(HSS)迭代方法(Bai Z Z,Golub G H,Ng M K.Hermitian and skew-Hermitian splitting methodsfor non-Hermitian positive definite linear systems.SIAM J.Matrix Anal.Appl.,2003,24:603-626).本文精确地估计了用HSS迭代方法求解广义鞍点问题时在加权2-范数和2-范数下的收缩因子.在实际的计算中,正是这些收缩因子而不是迭代矩阵的谱半径,本质上控制着HSS迭代方法的实际收敛速度.根据文中的分析,求解广义鞍点问题的HSS迭代方法的收缩因子在加权2-范数下等于1,在2-范数下它会大于等于1,而在某种适当选取的范数之下,它则会小于1.最后,用数值算例说明了理论结果的正确性.展开更多
基金supported by the Natural Science Foundation of Fujian Province under grant No.2014J01008
文摘In this paper, we introduce a split generalized equilibrium problem and consider some iterative sequences to find a solution of the equilibrium problem such that its image under a given bounded linear operator is a solution of another equilibrium problem. We obtain some strong and weak convergence theorems.
基金Project supported by the State Key Laboratory of Scientific/Engineering Computing,Chinese Academy of Sciencesthe International Science and Technology Cooperation Program of China(2010DFA14700)the National Natural Science Foundation of China(11071192)
文摘白中治等提出了解非埃尔米特正定线性方程组的埃尔米特和反埃尔米特分裂(HSS)迭代方法(Bai Z Z,Golub G H,Ng M K.Hermitian and skew-Hermitian splitting methodsfor non-Hermitian positive definite linear systems.SIAM J.Matrix Anal.Appl.,2003,24:603-626).本文精确地估计了用HSS迭代方法求解广义鞍点问题时在加权2-范数和2-范数下的收缩因子.在实际的计算中,正是这些收缩因子而不是迭代矩阵的谱半径,本质上控制着HSS迭代方法的实际收敛速度.根据文中的分析,求解广义鞍点问题的HSS迭代方法的收缩因子在加权2-范数下等于1,在2-范数下它会大于等于1,而在某种适当选取的范数之下,它则会小于1.最后,用数值算例说明了理论结果的正确性.