Online learners are individuals,and their learning abilities,knowledge,and learning performance differ substantially and are ever changing.These individual characteristics pose considerable challenges to online learni...Online learners are individuals,and their learning abilities,knowledge,and learning performance differ substantially and are ever changing.These individual characteristics pose considerable challenges to online learning courses.In this paper,we propose an online course generation and evolution approach based on genetic algorithms to provide personalized learning.The courses generated consider not only the difficulty level of a concept and the time spent by an individual learner on the concept,but also the changing learning performance of the individual learner during the learning process.We present a layered topological sort algorithm,which converges towards an optimal solution while considering multiple objectives.Our general approach makes use of the stochastic convergence of genetic algorithms.Experimental results show that the proposed algorithm is superior to the free browsing learning mode typically enabled by online learning environments because of the precise selection of learning content relevant to the individual learner,which results in good learning performance.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 61071154)the project FP7 "Responsive Open Learning Environments" of European Union
文摘Online learners are individuals,and their learning abilities,knowledge,and learning performance differ substantially and are ever changing.These individual characteristics pose considerable challenges to online learning courses.In this paper,we propose an online course generation and evolution approach based on genetic algorithms to provide personalized learning.The courses generated consider not only the difficulty level of a concept and the time spent by an individual learner on the concept,but also the changing learning performance of the individual learner during the learning process.We present a layered topological sort algorithm,which converges towards an optimal solution while considering multiple objectives.Our general approach makes use of the stochastic convergence of genetic algorithms.Experimental results show that the proposed algorithm is superior to the free browsing learning mode typically enabled by online learning environments because of the precise selection of learning content relevant to the individual learner,which results in good learning performance.