期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Installed capacity of coal seam gas power generation exceeds 480 MW under SGCC's coverage
1
《Electricity》 2009年第4期51-,共1页
The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC'... The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC's business area,the power generation 展开更多
关键词 Installed capacity of coal seam gas power generation exceeds 480 MW under SGCC’s coverage
下载PDF
Tectonic evolution and accumulation characteristics of Carboniferous shale gas in Yadu-Ziyun-Luodian aulacogen, Guizhou Province, South China
2
作者 Kun Yuan Wen-hui Huang +5 位作者 Ting Wang Shi-zhen Li Xiang-can Sun Xin-xin Fang Jun-ping Xiao Jun Guo 《China Geology》 CAS CSCD 2023年第4期646-659,共14页
The Yadu-Ziyun-Luodian aulacogen(YZLA) developed into being NW-trending in the Late Paleozoic,and was considered as an important passive continental margin aulacogen in Guizhou Province, South China. This tectonic zon... The Yadu-Ziyun-Luodian aulacogen(YZLA) developed into being NW-trending in the Late Paleozoic,and was considered as an important passive continental margin aulacogen in Guizhou Province, South China. This tectonic zone is considered a large intracontinental thrust-slip tectonic unit, which has undergone a long period of development. It was ultimately determined in the Yanshanian, where the typical Upper Paleozoic marine shales were deposited. In 2021, Well QSD-1 was deployed in the Liupanshui area at the northwest margin of the aulacogen, and obtained a daily shale gas flow of 11011 m3in the Carboniferous Dawuba Formation. It thus achieved a breakthrough in the invesgation of shale gas in the Lower Carboniferous in South China, revealing relatively good gas-bearing properties and broad exploration prospects of the aulacogen. Being different from the Lower Paleozoic strata in the Sichuan Basin and the Yichang area of the Middle Yangtze, the development of the Carboniferous Dawuba Formation in the aulacogen exhibits the following characteristics:(1) The Lower Carboniferous shale is thick and widely distributed, with interbedded shale and marlstone of virous thickness;(2) The total organic carbon(TOC) content of the shale in the Dawuba Formation ranges from 1% to 5%, with an average of 2%, and the thermal maturity of organic matter(Ro) varies from 1% to 4%, with an average of2.5%, indicating good hydrocarbon generation capacity;(3) The main shale in the aulacogen was formed during the fault subsidence stage from the Middle Devonian to the Early Permian. Although the strong compression and deformation during the late Indosinian-Himalayan played a certain role in destroying the formed shale gas reservoirs, comparative analysis suggests that the area covered by the current Triassic strata has a low degree of destruction. It therefore provides good conditions for shale gas preservation,which can be regarded as a favorable area for the next exploration. 展开更多
关键词 Shale gas AULACOGEN CARBONIFEROUS Shale and marlstone Organic carbon Organic matter Hydrocarbon generation capacity Tectonic evolution Accumulation characteristics
下载PDF
The accumulation characteristics and exploration potential of oil and gas in the back-arc basin of Japan under the background of high heat flow
3
作者 Jian-qiang Wang Jie Liang +10 位作者 Jian-wen Chen Qing-fang Zhao Yin-guo Zhang Jian-wei Zhang Sen Li Chang-qing Yang Jian Zhang Jing Sun Chuan-sheng Yang Yong Yuan Lee-Jel Jiang 《China Geology》 CAS CSCD 2023年第4期660-675,共16页
The Sea of Japan is located in the southeast margin of Eurasia, in the triangle area of the western Pacific Ocean. Due to the interaction of the Pacific plate, Eurasian plate and Philippine plate, its tectonic environ... The Sea of Japan is located in the southeast margin of Eurasia, in the triangle area of the western Pacific Ocean. Due to the interaction of the Pacific plate, Eurasian plate and Philippine plate, its tectonic environment is complex, forming a typical trench-arc-basin system. At present, 148 oil and gas fields have been discovered in Japan, with an oil and gas resource of 255.78×10^(6) t, showing a good prospect for oil and gas exploration. Based on the previous research and the recently collected geological and geophysical data, the characteristics of tectonic-sedimentary evolution and geothermal field in the basins around the Sea of Japan are analyzed. The results show that the tectonic evolution of the basin is mainly controlled by plate subduction and back-arc oceanic crust expansion, and it mainly undergone four tectonic-sedimentary evolution stages: Subduction period, basin development period, subsidence period and compression deformation period. The overall heat flow value of Japan Sea is high, and it is distributed annularly along Yamato Ridge. The geothermal heat flow value is about 50–130 MW/m^(2), and the average heat flow is75.9±19.8 MW/m^(2), which has a typical “hot basin ”. The high heat flow background provides unique thermal evolution conditions for hydrocarbon generation, which leads to the high temperature and rapid evolution. The authors summarized as “early hydrocarbon generation, rapid maturity and shallow and narrow hydrocarbon generation window”. The type of oil and gas is mainly natural gas, and it mainly distributed in Neogene oil and gas reservoirs. The trap types are mainly structural traps, lithologic traps and composite traps. In addition, the pre-Neogene bedrock oil and gas reservoirs also show a good exploration prospect. The resource prospecting indicates that Niigata Basin, Ulleung Basin and kitakami Basin are the main target areas for future exploration and development. 展开更多
关键词 Oil and gas Hydrocarbon generation capacity Back-arc basin Geothermal field Tectono-sedimentary evolution Hydrocarbon accumulation The Sea of Japan Western Pacific
下载PDF
Data-driven Distributionally Adjustable Robust Chance-constrained DG Capacity Assessment
4
作者 Masoume Mahmoodi Seyyed Mahdi Noori Rahim Abadi +2 位作者 Ahmad Attarha Paul Scott Lachlan Blackhall 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第1期115-127,共13页
Moving away from fossil fuels towards renewable sources requires system operators to determine the capacity of distribution systems to safely accommodate green and distributed generation(DG).However,the DG capacity of... Moving away from fossil fuels towards renewable sources requires system operators to determine the capacity of distribution systems to safely accommodate green and distributed generation(DG).However,the DG capacity of a distribution system is often underestimated due to either overly conservative electrical demand and DG output uncertainty modelling or neglecting the recourse capability of the available components.To improve the accuracy of DG capacity assessment,this paper proposes a distributionally adjustable robust chance-constrained approach that utilises uncertainty information to reduce the conservativeness of conventional robust approaches.The proposed approach also enables fast-acting devices such as inverters to adjust to the real-time realisation of uncertainty using the adjustable robust counterpart methodology.To achieve a tractable formulation,we first define uncertain chance constraints through distributionally robust conditional value-at-risk(CVaR),which is then reformulated into convex quadratic constraints.We subsequently solve the resulting large-scale,yet convex,model in a distributed fashion using the alternating direction method of multipliers(ADMM).Through numerical simulations,we demonstrate that the proposed approach outperforms the adjustable robust and conventional distributionally robust approaches by up to 15%and 40%,respectively,in terms of total installed DG capacity. 展开更多
关键词 Distributed generation(DG)capacity assessment distributionally robust optimisation chance-constrained optimisation distribution system
原文传递
Power Source Flexibility Margin Quantification Method for Multi-energy Power Systems Based on Blind Number Theory 被引量:1
5
作者 Bai Xiao Jialiang Wang +4 位作者 Zhiwen Xiao Gangui Yan Ling Dong Maochun Wang Hongzhi Yang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第6期2321-2331,共11页
The grid connection of a high proportion of re-newable energy generation increases the uncertainty in power systems.Therefore,the flexibility margin of different energy sources needs to be quantified to cope with the ... The grid connection of a high proportion of re-newable energy generation increases the uncertainty in power systems.Therefore,the flexibility margin of different energy sources needs to be quantified to cope with the uncertainty change and maintain the dynamic balance of power system flexibility.In this paper,first,the flexibility characteristics of source,net,load and power and load community(PLC)are analyzed.The dynamic equilibrium relationship among them is briefly introduced.Secondly,taking into full consideration the complex output characteristics of different energy sources and combining their respective flexibility characteristics,a quantitative model of the power source flexibility margin for thermal power,hydro-power,gas power and concentrating solar power is established.A quantitative model for a power source flexibility margin in PV and wind power based on blind number theory is estab-lished.Furthermore,the calculation method of theoretical power generation capacity,which can reflect different characteristics of output power of various energy sources,is presented.The actual output power of each power source in each period is predicted.Finally,a case study shows that the model and method can consider the operating characteristics of different types of power sources,and quickly and accurately quantify the adjustable range of flexibility margins of each power source at different periods of time,which can provide an important basis for evaluating the capacity of renewable energy consumption and the optimal operation of multi-energy power systems(MEPSs). 展开更多
关键词 Load forecasting multi-energy power system power generation capacity power source flexibility margin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部