A few traditional pulse-forming circuits are implemented in a commercial 0.13 μm digital complementary-metal-oxide-semiconductor (CMOS) technology. These circuits, based on a coplanar waveguide, are analyzed and co...A few traditional pulse-forming circuits are implemented in a commercial 0.13 μm digital complementary-metal-oxide-semiconductor (CMOS) technology. These circuits, based on a coplanar waveguide, are analyzed and compared through CadenceTM Spectre simulations. The results show that these traditional pulse-forming-line (PFL) based circuits can be implemented in standard CMOS technology for short pulse generations. Further work is needed to explore the potential of the circuit techniques and to minimize parasitic effects.展开更多
MIE is an important parameter to be used to rank the ignition risk of the combustible materials.Commonly used electric circuits for generating spark have been reviewed and their features are analyzed in detail.Attenti...MIE is an important parameter to be used to rank the ignition risk of the combustible materials.Commonly used electric circuits for generating spark have been reviewed and their features are analyzed in detail.Attention to avoiding test errors is stressed.Ranking of ignition risk is suggested based on MIE data.展开更多
In this paper,a simulation system of pseudo-random testing is described first to investigate the characteristics of pseudo-random testing.Several interesting experimental results are obtained.It is found out that init...In this paper,a simulation system of pseudo-random testing is described first to investigate the characteristics of pseudo-random testing.Several interesting experimental results are obtained.It is found out that initial states of pseudo-random sequences have little effect on fault coverage.Fixed connection between LFSR outputs and circuit inputs in which the number of LFSR stages m is less than the number of circuit inputs n leads to low fault coverage,and the fault coverage is reduced as m decreases.The local unrandomness of pseudo-random sequences is exposed clearly.Generally,when an LFSR is employed as a pseudo-random generator,there are at least as many LFSR stages as circuit inputs.However,for large circuits under test with hundreds of inputs,there are drawbacks of using an LFSR with hundreds of stages.In the paper,a new design for a pseudo-random pattern generator is proposed in which m<n.The relationship between test length and the number of LFSR stages is discussed in order to obtain necessary,fault coverage.It is shown that the design cannot only save LFSR hardware but also reduce test length without loss of fault coverage,and is easy to implement. The experimental results are provided for the 10 Benchmark Circuits to show the effectiveness of the generator.展开更多
It is known that critical path test generation method is not a complete algorithm for combinational circuits with reconvergent-fanout.In order to make it a complete algorithm,we put forward a reconvergent-fanout- orie...It is known that critical path test generation method is not a complete algorithm for combinational circuits with reconvergent-fanout.In order to make it a complete algorithm,we put forward a reconvergent-fanout- oriented technique,the principal critical path algorithm,propagating the critical value back to primary inputs along a single path,the principal critical path,and allowing multiple path sensitization if needed.Relationship among test patterns is also discussed to accelerate test generation.展开更多
文摘A few traditional pulse-forming circuits are implemented in a commercial 0.13 μm digital complementary-metal-oxide-semiconductor (CMOS) technology. These circuits, based on a coplanar waveguide, are analyzed and compared through CadenceTM Spectre simulations. The results show that these traditional pulse-forming-line (PFL) based circuits can be implemented in standard CMOS technology for short pulse generations. Further work is needed to explore the potential of the circuit techniques and to minimize parasitic effects.
文摘MIE is an important parameter to be used to rank the ignition risk of the combustible materials.Commonly used electric circuits for generating spark have been reviewed and their features are analyzed in detail.Attention to avoiding test errors is stressed.Ranking of ignition risk is suggested based on MIE data.
文摘In this paper,a simulation system of pseudo-random testing is described first to investigate the characteristics of pseudo-random testing.Several interesting experimental results are obtained.It is found out that initial states of pseudo-random sequences have little effect on fault coverage.Fixed connection between LFSR outputs and circuit inputs in which the number of LFSR stages m is less than the number of circuit inputs n leads to low fault coverage,and the fault coverage is reduced as m decreases.The local unrandomness of pseudo-random sequences is exposed clearly.Generally,when an LFSR is employed as a pseudo-random generator,there are at least as many LFSR stages as circuit inputs.However,for large circuits under test with hundreds of inputs,there are drawbacks of using an LFSR with hundreds of stages.In the paper,a new design for a pseudo-random pattern generator is proposed in which m<n.The relationship between test length and the number of LFSR stages is discussed in order to obtain necessary,fault coverage.It is shown that the design cannot only save LFSR hardware but also reduce test length without loss of fault coverage,and is easy to implement. The experimental results are provided for the 10 Benchmark Circuits to show the effectiveness of the generator.
文摘It is known that critical path test generation method is not a complete algorithm for combinational circuits with reconvergent-fanout.In order to make it a complete algorithm,we put forward a reconvergent-fanout- oriented technique,the principal critical path algorithm,propagating the critical value back to primary inputs along a single path,the principal critical path,and allowing multiple path sensitization if needed.Relationship among test patterns is also discussed to accelerate test generation.