In this paper,the generalized Kannan-type contraction in cone metric spaces over Banach algebras is introduced.The fixed point theorems satisfying generalized contractive conditions are obtained,without appealing to c...In this paper,the generalized Kannan-type contraction in cone metric spaces over Banach algebras is introduced.The fixed point theorems satisfying generalized contractive conditions are obtained,without appealing to completeness of X or normality of the cone.The continuity of the mapping is relaxed.Furthermore,we prove that the completeness in cone metric spaces over Banach algebras is necessary if the generalized Kannan-type contraction has a fixed point in X.These results greatly generalize several well-known comparable results in the literature.展开更多
Using the idea of Atanassov, we define the notion of intuitionistic Menger spaces as a netural generalizations of Menger spaces due to Menger. We also obtain a new generalized contraction mapping and utilize this cont...Using the idea of Atanassov, we define the notion of intuitionistic Menger spaces as a netural generalizations of Menger spaces due to Menger. We also obtain a new generalized contraction mapping and utilize this contraction mapping to prove the existance theorems of solutions to differential equations in intuitionistic Menger spaces.展开更多
Iterated function systems (IFS) were introduced by Hutchinson in 1981 as a natural generalization of the well-known Banach contraction principle. In 2010, D. R. Sahu and A. Chakraborty introduced K-Iterated Function...Iterated function systems (IFS) were introduced by Hutchinson in 1981 as a natural generalization of the well-known Banach contraction principle. In 2010, D. R. Sahu and A. Chakraborty introduced K-Iterated Function System using Kannan mapping which would cover a larger range of mappings. In this paper, following Hutchinson, D. R. Sahu and A. Chakraborty, we present some new iterated function systems by using the so-called generalized contractive mappings, which will also cover a large range of mappings. Our purpose is to prove the existence and uniqueness of attractors for such class of iterated function systems by virtue of a Banach-like fixed point theorem concerning generalized contractive mappings.展开更多
On November 8, 1996. the import contract signing ceremony on the two 660 MW coal-fired generating units of Hanfeng Thermal Power Plant 1st phase was held in the Great Hall of People, Beijing.
In this paper, we present some important generalizations of the Banach contraction principle, in which the Lipschitz constant k is replaced by some real- valued control function. For the applications to the fractal sp...In this paper, we present some important generalizations of the Banach contraction principle, in which the Lipschitz constant k is replaced by some real- valued control function. For the applications to the fractal space, we obtain the fixed point theorem of the some generalized contraction in the space of fractals.展开更多
In this paper, we prove a strong convergence theorem for resolvents of accretive operators in a Banach space by the viscosity approximation method with a generalized contraction mapping. The proximal point algorithm i...In this paper, we prove a strong convergence theorem for resolvents of accretive operators in a Banach space by the viscosity approximation method with a generalized contraction mapping. The proximal point algorithm in a Banach space is also considered. The results extend some very recent theorems of W. Takahashi.展开更多
基金Supported by the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities'Association(202101BA070001-045)the Science and Technology Development Fund,Macao SAR(0019/2021/A1).
文摘In this paper,the generalized Kannan-type contraction in cone metric spaces over Banach algebras is introduced.The fixed point theorems satisfying generalized contractive conditions are obtained,without appealing to completeness of X or normality of the cone.The continuity of the mapping is relaxed.Furthermore,we prove that the completeness in cone metric spaces over Banach algebras is necessary if the generalized Kannan-type contraction has a fixed point in X.These results greatly generalize several well-known comparable results in the literature.
文摘Using the idea of Atanassov, we define the notion of intuitionistic Menger spaces as a netural generalizations of Menger spaces due to Menger. We also obtain a new generalized contraction mapping and utilize this contraction mapping to prove the existance theorems of solutions to differential equations in intuitionistic Menger spaces.
基金Partially supported by National Natural Science Foundation of China (No. 10961003)
文摘Iterated function systems (IFS) were introduced by Hutchinson in 1981 as a natural generalization of the well-known Banach contraction principle. In 2010, D. R. Sahu and A. Chakraborty introduced K-Iterated Function System using Kannan mapping which would cover a larger range of mappings. In this paper, following Hutchinson, D. R. Sahu and A. Chakraborty, we present some new iterated function systems by using the so-called generalized contractive mappings, which will also cover a large range of mappings. Our purpose is to prove the existence and uniqueness of attractors for such class of iterated function systems by virtue of a Banach-like fixed point theorem concerning generalized contractive mappings.
文摘On November 8, 1996. the import contract signing ceremony on the two 660 MW coal-fired generating units of Hanfeng Thermal Power Plant 1st phase was held in the Great Hall of People, Beijing.
基金The NSF(11271150)of Chinathe China Goverment Scholarship
文摘In this paper, we present some important generalizations of the Banach contraction principle, in which the Lipschitz constant k is replaced by some real- valued control function. For the applications to the fractal space, we obtain the fixed point theorem of the some generalized contraction in the space of fractals.
文摘In this paper, we prove a strong convergence theorem for resolvents of accretive operators in a Banach space by the viscosity approximation method with a generalized contraction mapping. The proximal point algorithm in a Banach space is also considered. The results extend some very recent theorems of W. Takahashi.