In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts ...In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts forward the innovative reform paths for integrating artificial intelligence into postgraduate training mode of Acupuncture and Tuina major:construct the teaching staff of artificial intelligence graduate students;innovating artificial intelligence to promote the integration of classics and scientific research;constructing the ideological and political case base of artificial intelligence courses;implementing artificial intelligence platform blended teaching;building a domestic and foreign exchange platform for artificial intelligence.Through practical research in teaching,it has achieved good teaching results and played a good demonstration,leading and radiation role in similar majors in China.展开更多
With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generat...With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generative AI technology and its potential in personalized learning,interactive content creation and adaptive assessment in education were introduced firstly.Then,the application case of generative AI tools in teaching content creation,scenario-based teaching content development,visual teaching content development,complex concept deconstruction and analogy,student-led application practice and other aspects in the teaching of Building Decoration Materials was discussed.Through the teaching experiment and effect evaluation,the positive influence of generative AI technology on the improvement of students'learning effect and teaching efficiency was verified.Finally,some thoughts and inspirations on the combination of educational theory and generative AI technology,the integration of teaching design and generative AI technology,and the practice cases and effect evaluation were put forward,and the importance of teacher role transformation and personalized learning path design was emphasized to provide theoretical and practical support for the innovative development of higher education.展开更多
This study explores the impact of generative artificial intelligence(AI)-enabled instruction on critical thinking in English essay writing among 1,050 first-year English majors across four colleges.Pedagogical strateg...This study explores the impact of generative artificial intelligence(AI)-enabled instruction on critical thinking in English essay writing among 1,050 first-year English majors across four colleges.Pedagogical strategies,including facilitating critical responses and emphasizing real-world application,are identified to enhance generative AI’s impact.Both qualitative and quantitative analyses reveal significant post-intervention improvements in critical thinking skills.This research contributes to understanding how generative AI can effectively foster critical thinking in educational settings.展开更多
The emergence of generative artificial intelligence(AI)has had a huge impact on all areas of life,including the field of education.AI can assist teachers in cultivating talents and promoting personalized learning and ...The emergence of generative artificial intelligence(AI)has had a huge impact on all areas of life,including the field of education.AI can assist teachers in cultivating talents and promoting personalized learning and teaching,but it also prevents individuals from thinking independently and creatively.In the era of generative AI,the rapid development of technology and its significant impact on the field of education are inevitable.There are many educational issues related to it,such as teaching methods,student training goals,teaching philosophy and purposes,and other educational issues,that require re-conceptualization and review.展开更多
In recent years,artificial intelligence technology has developed rapidly around the world is widely used in various fields,and plays an important role.The integration of industrial Internet security with new technolog...In recent years,artificial intelligence technology has developed rapidly around the world is widely used in various fields,and plays an important role.The integration of industrial Internet security with new technologies such as big models and generative artificial intelligence has become a hot research issue.In this regard,this paper briefly analyzes the industrial Internet security technology and application from the perspective of generative artificial intelligence,hoping to provide some valuable reference and reference for readers.展开更多
This study,drawing on the commonalities between generative artificial intelligence and foreign language writing instruction,outlines the core ideology of digital humanities-based college English writing instruction,in...This study,drawing on the commonalities between generative artificial intelligence and foreign language writing instruction,outlines the core ideology of digital humanities-based college English writing instruction,including auxiliary use of generative artificial intelligence tools,primary focus on humanistic education,and the re-production of knowledge,aiming to foster students’critical thinking,collaborative skills,and creativity.Building on this foundation,the study delves into generative artificial intelligence tools applicable to different stages of process-genre writing and their strategic applications.The use of generative artificial intelligence tools is beneficial for students to present,discuss,and share writing content,encouraging them to enhance their writing,collaboration,critical thinking,and creative abilities through deep interaction with model essays and creative discourses.展开更多
The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite numb...The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite number of cases,this relationship is difficult to be revealed for complex irregular distributions,preventing design of such material structures to meet certain mechanical requirements.The noticeable developments of artificial intelligence(AI)algorithms in material design enables to detect the hidden structure-mechanics correlations which is essential for designing composite of complex structures.It is intriguing how these tools can assist composite design.Here,we focus on the rapid generation of bicontinuous composite structures together with the stress distribution in loading.We find that generative AI,enabled through fine-tuned Low Rank Adaptation models,can be trained with a few inputs to generate both synthetic composite structures and the corresponding von Mises stress distribution.The results show that this technique is convenient in generating massive composites designs with useful mechanical information that dictate stiffness,fracture and robustness of the material with one model,and such has to be done by several different experimental or simulation tests.This research offers valuable insights for the improvement of composite design with the goal of expanding the design space and automatic screening of composite designs for improved mechanical functions.展开更多
In this work,we have developed a novel machine(deep)learning computational framework to determine and identify damage loading parameters(conditions)for structures and materials based on the permanent or residual plast...In this work,we have developed a novel machine(deep)learning computational framework to determine and identify damage loading parameters(conditions)for structures and materials based on the permanent or residual plastic deformation distribution or damage state of the structure.We have shown that the developed machine learning algorithm can accurately and(practically)uniquely identify both prior static as well as impact loading conditions in an inverse manner,based on the residual plastic strain and plastic deformation as forensic signatures.The paper presents the detailed machine learning algorithm,data acquisition and learning processes,and validation/verification examples.This development may have significant impacts on forensic material analysis and structure failure analysis,and it provides a powerful tool for material and structure forensic diagnosis,determination,and identification of damage loading conditions in accidental failure events,such as car crashes and infrastructure or building structure collapses.展开更多
In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear s...In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.展开更多
Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne...Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.展开更多
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ...Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.展开更多
Artificial intelligence(AI)can sometimes resolve difficulties that other advanced technologies and humans cannot.In medical diagnostics,AI has the advantage of processing figure recognition,especially for images with ...Artificial intelligence(AI)can sometimes resolve difficulties that other advanced technologies and humans cannot.In medical diagnostics,AI has the advantage of processing figure recognition,especially for images with similar characteristics that are difficult to distinguish with the naked eye.However,the mechanisms of this advanced technique should be well-addressed to elucidate clinical issues.In this letter,regarding an original study presented by Takayama et al,we suggest that the authors should effectively illustrate the mechanism and detailed procedure that artificial intelligence techniques processing the acquired images,including the recognition of non-obvious difference between the normal parts and pathological ones,which were impossible to be distinguished by naked eyes,such as the basic constitutional elements of pixels and grayscale,special molecules or even some metal ions which involved into the diseases occurrence.展开更多
Air and space is one of the most intense fields of science and technology competition for powerful countries.This paper focuses on the competition to achieve mastery of air and space,and analyzes the impact of fast de...Air and space is one of the most intense fields of science and technology competition for powerful countries.This paper focuses on the competition to achieve mastery of air and space,and analyzes the impact of fast developing intelligent technologies from six basic contradictions of the war,including hiding and finding,understanding and confusion,network resilience and network degradation,hitting and intercepting,speed of action and decisionmaking,and shaping the perceptions of key crowd.On this basis,aiming at securing competitive advantage in the future,the development directions of intelligent technologies are proposed for the air and space competition.展开更多
Background and Objective:Advances in teleophthalmology and artificial intelligence(AI)for diabetic retinal screening is of growing public health interest.Currently,only 30–40%of patients with diabetes adhere to recom...Background and Objective:Advances in teleophthalmology and artificial intelligence(AI)for diabetic retinal screening is of growing public health interest.Currently,only 30–40%of patients with diabetes adhere to recommended diabetes screening guidelines.To enhance early detection and reduce vision threatening complications,there has been a growing number of teleophthalmology programs and novel AI algorithms with the aim to improve eye care access.The purpose of this review is to assess current literature on teleophthalmology and AI for use in diabetic retinopathy(DR)screening,and to discuss advances and barriers to these innovative technologies.Methods:Literature review involving teleophthalmology and AI for DR screening,with focus on the past decade.Key Content and Findings:Teleophthalmology has demonstrated the ability to increase DR screening rates,enable earlier eye care access,and reduce healthcare costs.Novel AI-based DR screening programs appear accurate and effective,but detection of other ocular pathologies is still under development and not yet approved in the United States.Logistical,technological,financial,and legal barriers limit widespread adoption and long-term sustainability of teleophthalmology programs.Conclusions:The use of teleophthalmology and AI algorithms expands eye care access and helps prevent vision loss from DR and potentially other sight threatening conditions.Transparency in the process utilized for arriving at a particular diagnosis or decision to refer,often referred to as the“black box”,remains a multifaceted issue within the field of telemedicine for developing trust and improving patient-centered outcomes.展开更多
The primary objectives of medical safety education are to provide the public with essential knowledge about medications and to foster a scientific approach to drug usage.The era of using artificial intelligence to rev...The primary objectives of medical safety education are to provide the public with essential knowledge about medications and to foster a scientific approach to drug usage.The era of using artificial intelligence to revolutionize medical safety education has already dawned,and ChatGPT and other generative artificial intelligence models have immense potential in this domain.Notably,they offer a wealth of knowledge,anonymity,continuous availability,and personalized services.However,the practical implementation of generative artificial intelligence models such as ChatGPT in medical safety education still faces several challenges,including concerns about the accuracy of information,legal responsibilities,and ethical obligations.Moving forward,it is crucial to intelligently upgrade ChatGPT by leveraging the strengths of existing medical practices.This task involves further integrating the model with real-life scenarios and proactively addressing ethical and security issues with the ultimate goal of providing the public with comprehensive,convenient,efficient,and personalized medical services.展开更多
基金Supported by Research Project of Postgraduate Education and Teaching Reform in Jilin Province in 2023(JJKH20230060YJG)Research Project of Teaching Reform of Vocational Education and Adult Education in Jilin Province(2022ZCY295)+5 种基金Scientific Research Project of Higher Education in Jilin Province in 2023(JGJX2023D200)Research Project of Teaching Reform of Higher Education in 2023(XJSX202301)Research Project of Teaching Reform of Higher Education in 2023(XJ202303)Postgraduate Training Innovation Demonstration Project in 2023(2023YJ04)Postgraduate Training Innovation Demonstration Project in 2023(2023YJ01)Provincial College Students Innovation and Entrepreneurship Project(S202310199042&S202310199043).
文摘In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts forward the innovative reform paths for integrating artificial intelligence into postgraduate training mode of Acupuncture and Tuina major:construct the teaching staff of artificial intelligence graduate students;innovating artificial intelligence to promote the integration of classics and scientific research;constructing the ideological and political case base of artificial intelligence courses;implementing artificial intelligence platform blended teaching;building a domestic and foreign exchange platform for artificial intelligence.Through practical research in teaching,it has achieved good teaching results and played a good demonstration,leading and radiation role in similar majors in China.
文摘With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generative AI technology and its potential in personalized learning,interactive content creation and adaptive assessment in education were introduced firstly.Then,the application case of generative AI tools in teaching content creation,scenario-based teaching content development,visual teaching content development,complex concept deconstruction and analogy,student-led application practice and other aspects in the teaching of Building Decoration Materials was discussed.Through the teaching experiment and effect evaluation,the positive influence of generative AI technology on the improvement of students'learning effect and teaching efficiency was verified.Finally,some thoughts and inspirations on the combination of educational theory and generative AI technology,the integration of teaching design and generative AI technology,and the practice cases and effect evaluation were put forward,and the importance of teacher role transformation and personalized learning path design was emphasized to provide theoretical and practical support for the innovative development of higher education.
基金General Project of Philosophy and Social Science Research in Jiangsu Universities in 2024“Research on the Mining and Integration Strategy of Ideological and Political Elements in Business English Major Courses”(2024SISZ0787)。
文摘This study explores the impact of generative artificial intelligence(AI)-enabled instruction on critical thinking in English essay writing among 1,050 first-year English majors across four colleges.Pedagogical strategies,including facilitating critical responses and emphasizing real-world application,are identified to enhance generative AI’s impact.Both qualitative and quantitative analyses reveal significant post-intervention improvements in critical thinking skills.This research contributes to understanding how generative AI can effectively foster critical thinking in educational settings.
文摘The emergence of generative artificial intelligence(AI)has had a huge impact on all areas of life,including the field of education.AI can assist teachers in cultivating talents and promoting personalized learning and teaching,but it also prevents individuals from thinking independently and creatively.In the era of generative AI,the rapid development of technology and its significant impact on the field of education are inevitable.There are many educational issues related to it,such as teaching methods,student training goals,teaching philosophy and purposes,and other educational issues,that require re-conceptualization and review.
文摘In recent years,artificial intelligence technology has developed rapidly around the world is widely used in various fields,and plays an important role.The integration of industrial Internet security with new technologies such as big models and generative artificial intelligence has become a hot research issue.In this regard,this paper briefly analyzes the industrial Internet security technology and application from the perspective of generative artificial intelligence,hoping to provide some valuable reference and reference for readers.
文摘This study,drawing on the commonalities between generative artificial intelligence and foreign language writing instruction,outlines the core ideology of digital humanities-based college English writing instruction,including auxiliary use of generative artificial intelligence tools,primary focus on humanistic education,and the re-production of knowledge,aiming to foster students’critical thinking,collaborative skills,and creativity.Building on this foundation,the study delves into generative artificial intelligence tools applicable to different stages of process-genre writing and their strategic applications.The use of generative artificial intelligence tools is beneficial for students to present,discuss,and share writing content,encouraging them to enhance their writing,collaboration,critical thinking,and creative abilities through deep interaction with model essays and creative discourses.
基金supported by the National Science Foundation CA-REER Grant(Grant No.2145392)the startup funding at Syracuse Uni-versity for supporting the research work.
文摘The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite number of cases,this relationship is difficult to be revealed for complex irregular distributions,preventing design of such material structures to meet certain mechanical requirements.The noticeable developments of artificial intelligence(AI)algorithms in material design enables to detect the hidden structure-mechanics correlations which is essential for designing composite of complex structures.It is intriguing how these tools can assist composite design.Here,we focus on the rapid generation of bicontinuous composite structures together with the stress distribution in loading.We find that generative AI,enabled through fine-tuned Low Rank Adaptation models,can be trained with a few inputs to generate both synthetic composite structures and the corresponding von Mises stress distribution.The results show that this technique is convenient in generating massive composites designs with useful mechanical information that dictate stiffness,fracture and robustness of the material with one model,and such has to be done by several different experimental or simulation tests.This research offers valuable insights for the improvement of composite design with the goal of expanding the design space and automatic screening of composite designs for improved mechanical functions.
文摘In this work,we have developed a novel machine(deep)learning computational framework to determine and identify damage loading parameters(conditions)for structures and materials based on the permanent or residual plastic deformation distribution or damage state of the structure.We have shown that the developed machine learning algorithm can accurately and(practically)uniquely identify both prior static as well as impact loading conditions in an inverse manner,based on the residual plastic strain and plastic deformation as forensic signatures.The paper presents the detailed machine learning algorithm,data acquisition and learning processes,and validation/verification examples.This development may have significant impacts on forensic material analysis and structure failure analysis,and it provides a powerful tool for material and structure forensic diagnosis,determination,and identification of damage loading conditions in accidental failure events,such as car crashes and infrastructure or building structure collapses.
基金supported by Prince Sultan University(Grant No.PSU-CE-TECH-135,2023).
文摘In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.
基金the Deanship of Scientific Research at Majmaah University for supporting this work under Project No.R-2024-1008.
文摘Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.
基金National Natural Science Foundation of China(82274265 and 82274588)Hunan University of Traditional Chinese Medicine Research Unveiled Marshal Programs(2022XJJB003).
文摘Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.
基金Supported by the Dean Responsible Project of Gansu Medical College,No.GY-2023FZZ01University Teachers Innovation Fund Project of Gansu Province,No.2023A-182and Key Research Project of Pingliang Science and Technology,No.PL-STK-2021A-004.
文摘Artificial intelligence(AI)can sometimes resolve difficulties that other advanced technologies and humans cannot.In medical diagnostics,AI has the advantage of processing figure recognition,especially for images with similar characteristics that are difficult to distinguish with the naked eye.However,the mechanisms of this advanced technique should be well-addressed to elucidate clinical issues.In this letter,regarding an original study presented by Takayama et al,we suggest that the authors should effectively illustrate the mechanism and detailed procedure that artificial intelligence techniques processing the acquired images,including the recognition of non-obvious difference between the normal parts and pathological ones,which were impossible to be distinguished by naked eyes,such as the basic constitutional elements of pixels and grayscale,special molecules or even some metal ions which involved into the diseases occurrence.
文摘Air and space is one of the most intense fields of science and technology competition for powerful countries.This paper focuses on the competition to achieve mastery of air and space,and analyzes the impact of fast developing intelligent technologies from six basic contradictions of the war,including hiding and finding,understanding and confusion,network resilience and network degradation,hitting and intercepting,speed of action and decisionmaking,and shaping the perceptions of key crowd.On this basis,aiming at securing competitive advantage in the future,the development directions of intelligent technologies are proposed for the air and space competition.
文摘Background and Objective:Advances in teleophthalmology and artificial intelligence(AI)for diabetic retinal screening is of growing public health interest.Currently,only 30–40%of patients with diabetes adhere to recommended diabetes screening guidelines.To enhance early detection and reduce vision threatening complications,there has been a growing number of teleophthalmology programs and novel AI algorithms with the aim to improve eye care access.The purpose of this review is to assess current literature on teleophthalmology and AI for use in diabetic retinopathy(DR)screening,and to discuss advances and barriers to these innovative technologies.Methods:Literature review involving teleophthalmology and AI for DR screening,with focus on the past decade.Key Content and Findings:Teleophthalmology has demonstrated the ability to increase DR screening rates,enable earlier eye care access,and reduce healthcare costs.Novel AI-based DR screening programs appear accurate and effective,but detection of other ocular pathologies is still under development and not yet approved in the United States.Logistical,technological,financial,and legal barriers limit widespread adoption and long-term sustainability of teleophthalmology programs.Conclusions:The use of teleophthalmology and AI algorithms expands eye care access and helps prevent vision loss from DR and potentially other sight threatening conditions.Transparency in the process utilized for arriving at a particular diagnosis or decision to refer,often referred to as the“black box”,remains a multifaceted issue within the field of telemedicine for developing trust and improving patient-centered outcomes.
文摘The primary objectives of medical safety education are to provide the public with essential knowledge about medications and to foster a scientific approach to drug usage.The era of using artificial intelligence to revolutionize medical safety education has already dawned,and ChatGPT and other generative artificial intelligence models have immense potential in this domain.Notably,they offer a wealth of knowledge,anonymity,continuous availability,and personalized services.However,the practical implementation of generative artificial intelligence models such as ChatGPT in medical safety education still faces several challenges,including concerns about the accuracy of information,legal responsibilities,and ethical obligations.Moving forward,it is crucial to intelligently upgrade ChatGPT by leveraging the strengths of existing medical practices.This task involves further integrating the model with real-life scenarios and proactively addressing ethical and security issues with the ultimate goal of providing the public with comprehensive,convenient,efficient,and personalized medical services.