期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Generative Adversarial Networks for Secure Data Transmission in Wireless Network
1
作者 E.Jayabalan R.Pugazendi 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3757-3784,共28页
In this paper,a communication model in cognitive radios is developed and uses machine learning to learn the dynamics of jamming attacks in cognitive radios.It is designed further to make their transmission decision th... In this paper,a communication model in cognitive radios is developed and uses machine learning to learn the dynamics of jamming attacks in cognitive radios.It is designed further to make their transmission decision that automati-cally adapts to the transmission dynamics to mitigate the launched jamming attacks.The generative adversarial learning neural network(GALNN)or genera-tive dynamic neural network(GDNN)automatically learns with the synthesized training data(training)with a generator and discriminator type neural networks that encompass minimax game theory.The elimination of the jamming attack is carried out with the assistance of the defense strategies and with an increased detection rate in the generative adversarial network(GAN).The GDNN with game theory is designed to validate the channel condition with the cross entropy loss function and back-propagation algorithm,which improves the communica-tion reliability in the network.The simulation is conducted in NS2.34 tool against several performance metrics to reduce the misdetection rate and false alarm rates.The results show that the GDNN obtains an increased rate of successful transmis-sion by taking optimal actions to act as a defense mechanism to mislead the jam-mer,where the jammer makes high misclassification errors on transmission dynamics. 展开更多
关键词 generative adversarial learning neural network JAMMER Minimax game theory ATTACKS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部