This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
Traditional generating algorithms for B Spline curves and surfaces require approximation methods where how to increment the parameter to get the best approximation is problematic; or they take the pixel-based method n...Traditional generating algorithms for B Spline curves and surfaces require approximation methods where how to increment the parameter to get the best approximation is problematic; or they take the pixel-based method needing matrix trans- formation from B Spline representation to Bézier form. Here, a fast, direct point-by-point generating algorithm for B Spline curves and surfaces is presented. The algorithm does not need matrix transformation, can be used for uniform or nonuniform B Spline curves and surfaces of any degree, and has high generating speed and good rendering accuracy.展开更多
Abstract Recently a, monotone generalized directional derixrative has been introduced for Lipschitz functions. This concept has been applied to represent and optimize nonsmooth functions. The second a.pplication resul...Abstract Recently a, monotone generalized directional derixrative has been introduced for Lipschitz functions. This concept has been applied to represent and optimize nonsmooth functions. The second a.pplication result,ed relevant for parallel computing, by allowing to define minimization algorithms with high degree of inherent parallelism. The paper presents first the theoretical background, namely the notions of monotone generalized directional derivative and monotone generalized subdifferential. Then it defines the tools for the procedures, that is a necessary optimality condition and a steel>est descent direction. Therefore the minimization algorithms are outlined. Successively the used architectures and the performed numerical expertence are described, by listing and commenting the t.ested functions and the obtained results.展开更多
Elliptic curve cryptography is an important part of nowaday's public key cryptosystem.Counting points of elliptic curves over finite fields is of great significance to the selection of safety curves.At present,the...Elliptic curve cryptography is an important part of nowaday's public key cryptosystem.Counting points of elliptic curves over finite fields is of great significance to the selection of safety curves.At present,there are many p-adic algorithms,such as SST algorithm,generalized AGM algorithm,Kedlaya algorithm,etc.,which can deal with the situation of finite fields of small characteristics.In this paper,the authors generalize the MSST algorithm of characteristic 2 to general fields of odd characteristic,and propose the generalized MSST algorithm.The generalized MSST algorithm is achieved by combining the advantages of the SST algorithm and the generalized AGM algorithm.If the time complexity of the multiplication of two n-bit numbers is denoted as O((n)^(μ)),then the time complexity of the generalized MSST algorithm is O(n^(2μ+1/1+μ)),which is the same as the improved SST algorithm.In practical experiments,the running time of the generalized MSST algorithm is less than that of the improved SST algorithm.展开更多
Coal fire burning around the world is an environmental catastrophe characterized by the emission of noxious gases, particulate matter, and condensation by-products. In this study, coal fire temperature is retrieved ba...Coal fire burning around the world is an environmental catastrophe characterized by the emission of noxious gases, particulate matter, and condensation by-products. In this study, coal fire temperature is retrieved based on Landsat 5 TM images and Generalized Single-Channel Algorithm (GSCA), in Wuda coalfield, Inner Mongolia, China. Then coal fire zones are extracted by Jenks′ natural breaks and threshold methods based on temperature images. Changes of coal fire zones are analyzed from 1989 to 2008. The results are summarized as follows: 1) The coal fire temperature retrieval method based on Landsat 5 TM and the GSCA model is effective and feasible, because the temperature error is relatively small (from –2.9℃ to +2.6℃) between the measured temperature and the retrieved temperature. 2) The accuracy is relatively high to extract coal fire zones through the Jenks′ natural breaks and threshold methods, because 83.56% of surveyed area is located in the coal fire zones extracted in 2005. 3) The coal fire area increased 9.81 × 10 5 m 2 from 1989 to 2005, and the annual growth is about 6.1 × 10 4 m 2 , with an annual increasing rate of 2.48%. The area of coal fire decreased by 8.1 × 10 5 m 2 from 2005 to 2008.展开更多
Surface wave methods have received much attention due to their efficient, flexible and convenient characteristics. However, there are still critical issues regarding a key step in surface wave inversion. In most exist...Surface wave methods have received much attention due to their efficient, flexible and convenient characteristics. However, there are still critical issues regarding a key step in surface wave inversion. In most existing methods, the number of layers is assumed to be known prior to the process of inversion. However, improper assignment of this parameter leads to erroneous inversion results. A Bayesian nonparametric method for Rayleigh wave inversion is proposed herein to address this problem. In this method, each model class represents a particular number of layers with unknown S-wave velocity and thickness of each layer. As a result, determination of the number of layers is equivalent to selection of the most applicable model class. Regarding each model class, the optimization search of S-wave velocity and thickness of each layer is implemented by using a genetic algorithm. Then, each model class is assessed in view of its efficiency under the Bayesian framework and the most efficient class is selected. Simulated and actual examples verify that the proposed Bayesian nonparametric approach is reliable and efficient for Rayleigh wave inversion, especially for its capability to determine the number of layers.展开更多
Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages...Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages were in the low computational complexity, broad applicability, and easy implementation. The approach is extended into analysis of each phase in the whole mission. Based on Fussell-Vesely importance measure, a simple and efficient importance measure is presented to analyze component’s importance of phased-mission systems considering imperfect coverage.展开更多
In order to solve the ambiguity problems in the semantic context (structure, granularity or scale) emerging in the process of ontology integration application, this paper analyzes the essential characters of context...In order to solve the ambiguity problems in the semantic context (structure, granularity or scale) emerging in the process of ontology integration application, this paper analyzes the essential characters of context structure, proposes a novel semantic context generating algorithm, which is implemented over VO-Editor(visual ontology editor), from the satisfiability-based point of view, and proves that the context entity generated by this algorithm is smallest in scale and unique. It offers a feasible means for developers to handle context problems for ontology integration application.展开更多
Solving large scale system of Simultaneous Linear Equations (SLE) has been (and continue to be) a major challenging problem for many real-world engineering and science applications. Solving SLE with singular coefficie...Solving large scale system of Simultaneous Linear Equations (SLE) has been (and continue to be) a major challenging problem for many real-world engineering and science applications. Solving SLE with singular coefficient matrices arises from various engineering and sciences applications [1]-[6]. In this paper, efficient numerical procedures for finding the generalized (or pseudo) inverse of a general (square/rectangle, symmetrical/unsymmetrical, non-singular/singular) matrix and solving systems of Simultaneous Linear Equations (SLE) are formulated and explained. The developed procedures and its associated computer software (under MATLAB [7] computer environment) have been based on “special Cholesky factorization schemes” (for a singular matrix). Test matrices from different fields of applications have been chosen, tested and compared with other existing algorithms. The results of the numerical tests have indicated that the developed procedures are far more efficient than the existing algorithms.展开更多
In this paper,the conventional method of establishing spatial channel models(SCMs)based on measurements is extended by including clusters-of-scatterers(CoSs)that exist along propagation paths.The channel models result...In this paper,the conventional method of establishing spatial channel models(SCMs)based on measurements is extended by including clusters-of-scatterers(CoSs)that exist along propagation paths.The channel models resulted utilizing this new method are applicable for generating channel realizations of reasonable spatial consistency,which is required for designing techniques and systems of the fifth generation wireless communications.The scatterers’locations are estimated from channel measurement data obtained using large-scale antenna arrays through the Space-Alternating Generalized Expectation-Maximization(SAGE)algorithm derived under a spherical wavefront assumption.The stochastic properties of CoSs extracted from real measurement data in an indoor environment are presented.展开更多
Land surface temperature(LST) is a key parameter reflecting the interaction between land and atmosphere. Currently,thermal infrared(TIR) quantitative remote sensing technology is the only means to obtain large-scale, ...Land surface temperature(LST) is a key parameter reflecting the interaction between land and atmosphere. Currently,thermal infrared(TIR) quantitative remote sensing technology is the only means to obtain large-scale, high spatial resolution LST. Accurately retrieving high spatial resolution mountainous LST(MLST) plays an important role in the study of mountain climate change. The complex terrain and strong spatial heterogeneity in mountainous areas change the geometric relationship between the surface and satellite sensors, affecting the radiation received by the sensors, and rendering the assumption of planar parallelism invalid. In this study, considering the influence of complex terrain in mountainous areas on atmospheric downward radiation and the thermal radiation contribution of adjacent pixels, a mountainous TIR radiative transfer model based on the sky view factor was developed. Combining with the atmospheric radiative transfer model MODTRAN 5.2, a nonlinear generalized split-window algorithm suitable for high spatial resolution MLST retrieval was constructed and applied to Landsat-9 TIRS-2satellite TIR remote sensing data. The analysis results indicate that neglecting the topographic and adjacency effects would lead to significant discrepancies in LST retrieval, with simulated data showing LST differences of up to 2.5 K. Furthermore, due to the lack of measured MLST in the field, the MLST accuracy obtained by this retrieval method was indirectly validated using the currently recognized highest-accuracy forward 3D radiative transfer model DART. The MLST and emissivity were input into the DART model to simulate the brightness temperature at the top of the atmosphere(TOA) of Landsat-9 band 10, and compared with the brightness temperature at TOA of Landsat-9 band 10. The RMSE(Root Mean Square Error) for the two subregions was0.50 and 0.61 K, respectively, indicating that the method proposed can retrieve high-precision MLST.展开更多
In this paper, a novel algorithm is presented for direction of arrival(DOA) estimation and array self-calibration in the presence of unknown mutual coupling. In order to highlight the relationship between the array ...In this paper, a novel algorithm is presented for direction of arrival(DOA) estimation and array self-calibration in the presence of unknown mutual coupling. In order to highlight the relationship between the array output and mutual coupling coefficients, we present a novel model of the array output with the unknown mutual coupling coefficients. Based on this model, we use the space alternating generalized expectation-maximization(SAGE) algorithm to jointly estimate the DOA parameters and the mutual coupling coefficients. Unlike many existing counterparts, our method requires neither calibration sources nor initial calibration information. At the same time,our proposed method inherits the characteristics of good convergence and high estimation precision of the SAGE algorithm. By numerical experiments we demonstrate that our proposed method outperforms the existing method for DOA estimation and mutual coupling calibration.展开更多
The purpose of this paper is to derive the generalized conjugate residual(GCR)algorithm for finding the least squares solution on a class of Sylvester matrix equations.We prove that if the system is inconsistent,the l...The purpose of this paper is to derive the generalized conjugate residual(GCR)algorithm for finding the least squares solution on a class of Sylvester matrix equations.We prove that if the system is inconsistent,the least squares solution can be obtained within finite iterative steps in the absence of round-off errors.Furthermore,we provide a method for choosing the initial matrix to obtain the minimum norm least squares solution of the problem.Finally,we give some numerical examples to illustrate the performance of GCR algorithm.展开更多
In this paper, we have proved that the lower bound of the number of real multiplications for computing a length 2(t) real GFT(a,b) (a = +/-1/2, b = 0 or b = +/-1/2, a = 0) is 2(t+1) - 2t - 2 and that for computing a l...In this paper, we have proved that the lower bound of the number of real multiplications for computing a length 2(t) real GFT(a,b) (a = +/-1/2, b = 0 or b = +/-1/2, a = 0) is 2(t+1) - 2t - 2 and that for computing a length 2t real GFT(a,b)(a = +/-1/2, b = +/-1/2) is 2(t+1) - 2. Practical algorithms which meet the lower bounds of multiplications are given.展开更多
This paper presents a new mathematical model for the highly nonlinear problem of frictional con- tact. A programming model, multipole boundary element method (BEM), was developed for 3-D elastic con- tact with frict...This paper presents a new mathematical model for the highly nonlinear problem of frictional con- tact. A programming model, multipole boundary element method (BEM), was developed for 3-D elastic con- tact with friction to replace the Monte Carlo method. A numerical example shows that the optimization pro- gramming model for the point-to-surface contact with friction and the fast optimization generalized minimal residual algorithm (GMRES(m)) significantly improve the analysis of such problems relative to the conven- tional BEM.展开更多
In solving application problems, many largesscale nonlinear systems of equations result in sparse Jacobian matrices. Such nonlinear systems are called sparse nonlinear systems. The irregularity of the locations of non...In solving application problems, many largesscale nonlinear systems of equations result in sparse Jacobian matrices. Such nonlinear systems are called sparse nonlinear systems. The irregularity of the locations of nonzero elements of a general sparse matrix makes it very difficult to generally map sparse matrix computations to multiprocessors for parallel processing in a well balanced manner. To overcome this difficulty, we define a new storage scheme for general sparse matrices in this paper. With the new storage scheme, we develop parallel algorithms to solve large-scale general sparse systems of equations by interval Newton/Generalized bisection methods which reliably find all numerical solutions within a given domain.In Section 1, we provide an introduction to the addressed problem and the interval Newton's methods. In Section 2, some currently used storage schemes for sparse sys-terns are reviewed. In Section 3, new index schemes to store general sparse matrices are reported. In Section 4, we present a parallel algorithm to evaluate a general sparse Jarobian matrix. In Section 5, we present a parallel algorithm to solve the correspond-ing interval linear 8ystem by the all-row preconditioned scheme. Conclusions and future work are discussed in Section 6.展开更多
The velocity field in the Wu River at Chongqing was simulated using the shallow water equation implemented on clustered workstations. The parallel computing technique was used to increase the comput- ing power. The sh...The velocity field in the Wu River at Chongqing was simulated using the shallow water equation implemented on clustered workstations. The parallel computing technique was used to increase the comput- ing power. The shallow water equation was discretized to a linear system of equations with a direct parallel generalized minimum residual algorithm (GMRES) used to solve the linear system. Unlike other parallel GMRES methods, the direct GMRES method does not alter the sequential algorithm, but bases the paral- lelization on basic operations such as the matrix-vector product. The computed results agree well with ob- served results. The parallel computing technique significantly increases the solution speed for this large- scale problem.展开更多
Linear matrix equations are encountered in many systems and control applications.In this paper,we consider the general coupled matrix equations(including the generalized coupled Sylvester matrix equations as a specia...Linear matrix equations are encountered in many systems and control applications.In this paper,we consider the general coupled matrix equations(including the generalized coupled Sylvester matrix equations as a special case)l t=1EstYtFst = Gs,s = 1,2,···,l over the generalized reflexive matrix group(Y1,Y2,···,Yl).We derive an efcient gradient-iterative(GI) algorithm for fnding the generalized reflexive solution group of the general coupled matrix equations.Convergence analysis indicates that the algorithm always converges to the generalized reflexive solution group for any initial generalized reflexive matrix group(Y1(1),Y2(1),···,Yl(1)).Finally,numerical results are presented to test and illustrate the performance of the algorithm in terms of convergence,accuracy as well as the efciency.展开更多
After the consideration of the nonlinear nature changes of monsoon index,and the subjective determination of network structure in traditional artificial neural network prediction modeling,monthly and seasonal monsoon ...After the consideration of the nonlinear nature changes of monsoon index,and the subjective determination of network structure in traditional artificial neural network prediction modeling,monthly and seasonal monsoon intensity index prediction is studied in this paper by using nonlinear genetic neural network ensemble prediction(GNNEP)modeling.It differs from traditional prediction modeling in the following aspects: (1)Input factors of the GNNEP model of monsoon index were selected from a large quantity of preceding period high correlation factors,such as monthly sea temperature fields,monthly 500-hPa air temperature fields,monthly 200-hPa geopotential height fields,etc.,and they were also highly information-condensed and system dimensionality-reduced by using the empirical orthogonal function(EOF)method,which effectively condensed the useful information of predictors and therefore controlled the size of network structure of the GNNEP model.(2)In the input design of the GNNEP model,a mean generating function(MGF)series of predictand(monsoon index)was added as an input factor;the contrast analysis of results of predic- tion experiments by a physical variable predictor-predictand MGF GNNEP model and a physical variable predictor GNNEP model shows that the incorporation of the periodical variation of predictand(monsoon index)is very effective in improving the prediction of monsoon index.(3)Different from the traditional neural network modeling,the GNNEP modeling is able to objectively determine the network structure of the GNNNEP model,and the model constructed has a better generalization capability.In the case of identical predictors,prediction modeling samples,and independent prediction samples,the prediction accuracy of our GNNEP model combined with the system dimensionality reduction technique of predictors is clearly higher than that of the traditional stepwise regression model using the traditional treatment technique of predictors,suggesting that the GNNEP model opens up a vast range of possibilities for operational weather prediction.展开更多
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
基金Project (No. G1998030401) supported by the National Natural Sci-ence Foundation of China
文摘Traditional generating algorithms for B Spline curves and surfaces require approximation methods where how to increment the parameter to get the best approximation is problematic; or they take the pixel-based method needing matrix trans- formation from B Spline representation to Bézier form. Here, a fast, direct point-by-point generating algorithm for B Spline curves and surfaces is presented. The algorithm does not need matrix transformation, can be used for uniform or nonuniform B Spline curves and surfaces of any degree, and has high generating speed and good rendering accuracy.
文摘Abstract Recently a, monotone generalized directional derixrative has been introduced for Lipschitz functions. This concept has been applied to represent and optimize nonsmooth functions. The second a.pplication result,ed relevant for parallel computing, by allowing to define minimization algorithms with high degree of inherent parallelism. The paper presents first the theoretical background, namely the notions of monotone generalized directional derivative and monotone generalized subdifferential. Then it defines the tools for the procedures, that is a necessary optimality condition and a steel>est descent direction. Therefore the minimization algorithms are outlined. Successively the used architectures and the performed numerical expertence are described, by listing and commenting the t.ested functions and the obtained results.
基金supported by the National Natural Science Foundation of China under Grant No.11701552。
文摘Elliptic curve cryptography is an important part of nowaday's public key cryptosystem.Counting points of elliptic curves over finite fields is of great significance to the selection of safety curves.At present,there are many p-adic algorithms,such as SST algorithm,generalized AGM algorithm,Kedlaya algorithm,etc.,which can deal with the situation of finite fields of small characteristics.In this paper,the authors generalize the MSST algorithm of characteristic 2 to general fields of odd characteristic,and propose the generalized MSST algorithm.The generalized MSST algorithm is achieved by combining the advantages of the SST algorithm and the generalized AGM algorithm.If the time complexity of the multiplication of two n-bit numbers is denoted as O((n)^(μ)),then the time complexity of the generalized MSST algorithm is O(n^(2μ+1/1+μ)),which is the same as the improved SST algorithm.In practical experiments,the running time of the generalized MSST algorithm is less than that of the improved SST algorithm.
基金Under the auspices of International Program for Cooperation in Science and Technology (No. 2007DFA20640)National High Technology Research and Development Program of China (No. 2009AA12Z146, 2009AA12Z124)National Natural Science Foundation of China (No. 40701172)
文摘Coal fire burning around the world is an environmental catastrophe characterized by the emission of noxious gases, particulate matter, and condensation by-products. In this study, coal fire temperature is retrieved based on Landsat 5 TM images and Generalized Single-Channel Algorithm (GSCA), in Wuda coalfield, Inner Mongolia, China. Then coal fire zones are extracted by Jenks′ natural breaks and threshold methods based on temperature images. Changes of coal fire zones are analyzed from 1989 to 2008. The results are summarized as follows: 1) The coal fire temperature retrieval method based on Landsat 5 TM and the GSCA model is effective and feasible, because the temperature error is relatively small (from –2.9℃ to +2.6℃) between the measured temperature and the retrieved temperature. 2) The accuracy is relatively high to extract coal fire zones through the Jenks′ natural breaks and threshold methods, because 83.56% of surveyed area is located in the coal fire zones extracted in 2005. 3) The coal fire area increased 9.81 × 10 5 m 2 from 1989 to 2005, and the annual growth is about 6.1 × 10 4 m 2 , with an annual increasing rate of 2.48%. The area of coal fire decreased by 8.1 × 10 5 m 2 from 2005 to 2008.
基金Science and Technology Development Fund of the Macao SAR under research grant SKL-IOTSC-2018-2020the Research Committee of University of Macao under Research Grant MYRG2016-00029-FST。
文摘Surface wave methods have received much attention due to their efficient, flexible and convenient characteristics. However, there are still critical issues regarding a key step in surface wave inversion. In most existing methods, the number of layers is assumed to be known prior to the process of inversion. However, improper assignment of this parameter leads to erroneous inversion results. A Bayesian nonparametric method for Rayleigh wave inversion is proposed herein to address this problem. In this method, each model class represents a particular number of layers with unknown S-wave velocity and thickness of each layer. As a result, determination of the number of layers is equivalent to selection of the most applicable model class. Regarding each model class, the optimization search of S-wave velocity and thickness of each layer is implemented by using a genetic algorithm. Then, each model class is assessed in view of its efficiency under the Bayesian framework and the most efficient class is selected. Simulated and actual examples verify that the proposed Bayesian nonparametric approach is reliable and efficient for Rayleigh wave inversion, especially for its capability to determine the number of layers.
基金Supported by National Outstanding Youth Science Foundation of China (No.79725002)
文摘Accounting for static phased-mission systems (PMS) and imperfect coverage (IPC), generalized and integrated algorithm (GPMS-CPR) implemented a synthesis of several approaches into a single methodology whose advantages were in the low computational complexity, broad applicability, and easy implementation. The approach is extended into analysis of each phase in the whole mission. Based on Fussell-Vesely importance measure, a simple and efficient importance measure is presented to analyze component’s importance of phased-mission systems considering imperfect coverage.
基金the National Natural Science Foundation of China ( 90604005)
文摘In order to solve the ambiguity problems in the semantic context (structure, granularity or scale) emerging in the process of ontology integration application, this paper analyzes the essential characters of context structure, proposes a novel semantic context generating algorithm, which is implemented over VO-Editor(visual ontology editor), from the satisfiability-based point of view, and proves that the context entity generated by this algorithm is smallest in scale and unique. It offers a feasible means for developers to handle context problems for ontology integration application.
文摘Solving large scale system of Simultaneous Linear Equations (SLE) has been (and continue to be) a major challenging problem for many real-world engineering and science applications. Solving SLE with singular coefficient matrices arises from various engineering and sciences applications [1]-[6]. In this paper, efficient numerical procedures for finding the generalized (or pseudo) inverse of a general (square/rectangle, symmetrical/unsymmetrical, non-singular/singular) matrix and solving systems of Simultaneous Linear Equations (SLE) are formulated and explained. The developed procedures and its associated computer software (under MATLAB [7] computer environment) have been based on “special Cholesky factorization schemes” (for a singular matrix). Test matrices from different fields of applications have been chosen, tested and compared with other existing algorithms. The results of the numerical tests have indicated that the developed procedures are far more efficient than the existing algorithms.
基金jointly supported by the key project “5G Ka frequency bands and higher and lower frequency band cooperative trail system research and development” of China Ministry of Industry and Information Technology under Grant number 2016ZX03001015the Hong Kong,Macao and Taiwan Science&Technology Cooperation Program of China under Grant No.2014DFT10290.
文摘In this paper,the conventional method of establishing spatial channel models(SCMs)based on measurements is extended by including clusters-of-scatterers(CoSs)that exist along propagation paths.The channel models resulted utilizing this new method are applicable for generating channel realizations of reasonable spatial consistency,which is required for designing techniques and systems of the fifth generation wireless communications.The scatterers’locations are estimated from channel measurement data obtained using large-scale antenna arrays through the Space-Alternating Generalized Expectation-Maximization(SAGE)algorithm derived under a spherical wavefront assumption.The stochastic properties of CoSs extracted from real measurement data in an indoor environment are presented.
基金supported by the National Natural Science Foundation of China (Grant No. 42230109)the Yunling Scholar Project of the “Xingdian Talent Support Program” of Yunnan Province (Grant No. 202221002)+1 种基金the Platform Construction Project of High-Level Talent in the Kunming University of Science and Technology (KUST) (Grant No. 7202221001)the “Top Innovative Talent” Program for Doctoral Candidates in the KUST (Grant No. CA24163M078A)。
文摘Land surface temperature(LST) is a key parameter reflecting the interaction between land and atmosphere. Currently,thermal infrared(TIR) quantitative remote sensing technology is the only means to obtain large-scale, high spatial resolution LST. Accurately retrieving high spatial resolution mountainous LST(MLST) plays an important role in the study of mountain climate change. The complex terrain and strong spatial heterogeneity in mountainous areas change the geometric relationship between the surface and satellite sensors, affecting the radiation received by the sensors, and rendering the assumption of planar parallelism invalid. In this study, considering the influence of complex terrain in mountainous areas on atmospheric downward radiation and the thermal radiation contribution of adjacent pixels, a mountainous TIR radiative transfer model based on the sky view factor was developed. Combining with the atmospheric radiative transfer model MODTRAN 5.2, a nonlinear generalized split-window algorithm suitable for high spatial resolution MLST retrieval was constructed and applied to Landsat-9 TIRS-2satellite TIR remote sensing data. The analysis results indicate that neglecting the topographic and adjacency effects would lead to significant discrepancies in LST retrieval, with simulated data showing LST differences of up to 2.5 K. Furthermore, due to the lack of measured MLST in the field, the MLST accuracy obtained by this retrieval method was indirectly validated using the currently recognized highest-accuracy forward 3D radiative transfer model DART. The MLST and emissivity were input into the DART model to simulate the brightness temperature at the top of the atmosphere(TOA) of Landsat-9 band 10, and compared with the brightness temperature at TOA of Landsat-9 band 10. The RMSE(Root Mean Square Error) for the two subregions was0.50 and 0.61 K, respectively, indicating that the method proposed can retrieve high-precision MLST.
基金supported by the National Natural Science Foundation of China (No. 61302141)
文摘In this paper, a novel algorithm is presented for direction of arrival(DOA) estimation and array self-calibration in the presence of unknown mutual coupling. In order to highlight the relationship between the array output and mutual coupling coefficients, we present a novel model of the array output with the unknown mutual coupling coefficients. Based on this model, we use the space alternating generalized expectation-maximization(SAGE) algorithm to jointly estimate the DOA parameters and the mutual coupling coefficients. Unlike many existing counterparts, our method requires neither calibration sources nor initial calibration information. At the same time,our proposed method inherits the characteristics of good convergence and high estimation precision of the SAGE algorithm. By numerical experiments we demonstrate that our proposed method outperforms the existing method for DOA estimation and mutual coupling calibration.
基金Supported by Fujian Natural ScienceFoundation(Grant No.2016J01005)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB18010202).
文摘The purpose of this paper is to derive the generalized conjugate residual(GCR)algorithm for finding the least squares solution on a class of Sylvester matrix equations.We prove that if the system is inconsistent,the least squares solution can be obtained within finite iterative steps in the absence of round-off errors.Furthermore,we provide a method for choosing the initial matrix to obtain the minimum norm least squares solution of the problem.Finally,we give some numerical examples to illustrate the performance of GCR algorithm.
文摘In this paper, we have proved that the lower bound of the number of real multiplications for computing a length 2(t) real GFT(a,b) (a = +/-1/2, b = 0 or b = +/-1/2, a = 0) is 2(t+1) - 2t - 2 and that for computing a length 2t real GFT(a,b)(a = +/-1/2, b = +/-1/2) is 2(t+1) - 2. Practical algorithms which meet the lower bounds of multiplications are given.
基金Supported by the National Natural Science Foundation of China(No. 50075075)
文摘This paper presents a new mathematical model for the highly nonlinear problem of frictional con- tact. A programming model, multipole boundary element method (BEM), was developed for 3-D elastic con- tact with friction to replace the Monte Carlo method. A numerical example shows that the optimization pro- gramming model for the point-to-surface contact with friction and the fast optimization generalized minimal residual algorithm (GMRES(m)) significantly improve the analysis of such problems relative to the conven- tional BEM.
文摘In solving application problems, many largesscale nonlinear systems of equations result in sparse Jacobian matrices. Such nonlinear systems are called sparse nonlinear systems. The irregularity of the locations of nonzero elements of a general sparse matrix makes it very difficult to generally map sparse matrix computations to multiprocessors for parallel processing in a well balanced manner. To overcome this difficulty, we define a new storage scheme for general sparse matrices in this paper. With the new storage scheme, we develop parallel algorithms to solve large-scale general sparse systems of equations by interval Newton/Generalized bisection methods which reliably find all numerical solutions within a given domain.In Section 1, we provide an introduction to the addressed problem and the interval Newton's methods. In Section 2, some currently used storage schemes for sparse sys-terns are reviewed. In Section 3, new index schemes to store general sparse matrices are reported. In Section 4, we present a parallel algorithm to evaluate a general sparse Jarobian matrix. In Section 5, we present a parallel algorithm to solve the correspond-ing interval linear 8ystem by the all-row preconditioned scheme. Conclusions and future work are discussed in Section 6.
基金Supported by the National Natural Science Foundation of China (Nos. 50379022 and 59979013)
文摘The velocity field in the Wu River at Chongqing was simulated using the shallow water equation implemented on clustered workstations. The parallel computing technique was used to increase the comput- ing power. The shallow water equation was discretized to a linear system of equations with a direct parallel generalized minimum residual algorithm (GMRES) used to solve the linear system. Unlike other parallel GMRES methods, the direct GMRES method does not alter the sequential algorithm, but bases the paral- lelization on basic operations such as the matrix-vector product. The computed results agree well with ob- served results. The parallel computing technique significantly increases the solution speed for this large- scale problem.
文摘Linear matrix equations are encountered in many systems and control applications.In this paper,we consider the general coupled matrix equations(including the generalized coupled Sylvester matrix equations as a special case)l t=1EstYtFst = Gs,s = 1,2,···,l over the generalized reflexive matrix group(Y1,Y2,···,Yl).We derive an efcient gradient-iterative(GI) algorithm for fnding the generalized reflexive solution group of the general coupled matrix equations.Convergence analysis indicates that the algorithm always converges to the generalized reflexive solution group for any initial generalized reflexive matrix group(Y1(1),Y2(1),···,Yl(1)).Finally,numerical results are presented to test and illustrate the performance of the algorithm in terms of convergence,accuracy as well as the efciency.
基金the New Technology Extension Project of China Meteorological Administration under Grant No.GMATG2008M49the National Natural Science Foundation of China under Grant No.40675023
文摘After the consideration of the nonlinear nature changes of monsoon index,and the subjective determination of network structure in traditional artificial neural network prediction modeling,monthly and seasonal monsoon intensity index prediction is studied in this paper by using nonlinear genetic neural network ensemble prediction(GNNEP)modeling.It differs from traditional prediction modeling in the following aspects: (1)Input factors of the GNNEP model of monsoon index were selected from a large quantity of preceding period high correlation factors,such as monthly sea temperature fields,monthly 500-hPa air temperature fields,monthly 200-hPa geopotential height fields,etc.,and they were also highly information-condensed and system dimensionality-reduced by using the empirical orthogonal function(EOF)method,which effectively condensed the useful information of predictors and therefore controlled the size of network structure of the GNNEP model.(2)In the input design of the GNNEP model,a mean generating function(MGF)series of predictand(monsoon index)was added as an input factor;the contrast analysis of results of predic- tion experiments by a physical variable predictor-predictand MGF GNNEP model and a physical variable predictor GNNEP model shows that the incorporation of the periodical variation of predictand(monsoon index)is very effective in improving the prediction of monsoon index.(3)Different from the traditional neural network modeling,the GNNEP modeling is able to objectively determine the network structure of the GNNNEP model,and the model constructed has a better generalization capability.In the case of identical predictors,prediction modeling samples,and independent prediction samples,the prediction accuracy of our GNNEP model combined with the system dimensionality reduction technique of predictors is clearly higher than that of the traditional stepwise regression model using the traditional treatment technique of predictors,suggesting that the GNNEP model opens up a vast range of possibilities for operational weather prediction.