With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generat...With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generative AI technology and its potential in personalized learning,interactive content creation and adaptive assessment in education were introduced firstly.Then,the application case of generative AI tools in teaching content creation,scenario-based teaching content development,visual teaching content development,complex concept deconstruction and analogy,student-led application practice and other aspects in the teaching of Building Decoration Materials was discussed.Through the teaching experiment and effect evaluation,the positive influence of generative AI technology on the improvement of students'learning effect and teaching efficiency was verified.Finally,some thoughts and inspirations on the combination of educational theory and generative AI technology,the integration of teaching design and generative AI technology,and the practice cases and effect evaluation were put forward,and the importance of teacher role transformation and personalized learning path design was emphasized to provide theoretical and practical support for the innovative development of higher education.展开更多
This study explores the impact of generative artificial intelligence(AI)-enabled instruction on critical thinking in English essay writing among 1,050 first-year English majors across four colleges.Pedagogical strateg...This study explores the impact of generative artificial intelligence(AI)-enabled instruction on critical thinking in English essay writing among 1,050 first-year English majors across four colleges.Pedagogical strategies,including facilitating critical responses and emphasizing real-world application,are identified to enhance generative AI’s impact.Both qualitative and quantitative analyses reveal significant post-intervention improvements in critical thinking skills.This research contributes to understanding how generative AI can effectively foster critical thinking in educational settings.展开更多
The emergence of generative artificial intelligence(AI)has had a huge impact on all areas of life,including the field of education.AI can assist teachers in cultivating talents and promoting personalized learning and ...The emergence of generative artificial intelligence(AI)has had a huge impact on all areas of life,including the field of education.AI can assist teachers in cultivating talents and promoting personalized learning and teaching,but it also prevents individuals from thinking independently and creatively.In the era of generative AI,the rapid development of technology and its significant impact on the field of education are inevitable.There are many educational issues related to it,such as teaching methods,student training goals,teaching philosophy and purposes,and other educational issues,that require re-conceptualization and review.展开更多
This study,drawing on the commonalities between generative artificial intelligence and foreign language writing instruction,outlines the core ideology of digital humanities-based college English writing instruction,in...This study,drawing on the commonalities between generative artificial intelligence and foreign language writing instruction,outlines the core ideology of digital humanities-based college English writing instruction,including auxiliary use of generative artificial intelligence tools,primary focus on humanistic education,and the re-production of knowledge,aiming to foster students’critical thinking,collaborative skills,and creativity.Building on this foundation,the study delves into generative artificial intelligence tools applicable to different stages of process-genre writing and their strategic applications.The use of generative artificial intelligence tools is beneficial for students to present,discuss,and share writing content,encouraging them to enhance their writing,collaboration,critical thinking,and creative abilities through deep interaction with model essays and creative discourses.展开更多
The primary objectives of medical safety education are to provide the public with essential knowledge about medications and to foster a scientific approach to drug usage.The era of using artificial intelligence to rev...The primary objectives of medical safety education are to provide the public with essential knowledge about medications and to foster a scientific approach to drug usage.The era of using artificial intelligence to revolutionize medical safety education has already dawned,and ChatGPT and other generative artificial intelligence models have immense potential in this domain.Notably,they offer a wealth of knowledge,anonymity,continuous availability,and personalized services.However,the practical implementation of generative artificial intelligence models such as ChatGPT in medical safety education still faces several challenges,including concerns about the accuracy of information,legal responsibilities,and ethical obligations.Moving forward,it is crucial to intelligently upgrade ChatGPT by leveraging the strengths of existing medical practices.This task involves further integrating the model with real-life scenarios and proactively addressing ethical and security issues with the ultimate goal of providing the public with comprehensive,convenient,efficient,and personalized medical services.展开更多
Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologi...Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologies as Siri, Google, and Netflix deploy AI algorithms to answer questions, impart information, and provide recommendations. However, many individuals including originators and backers of AI have recently expressed grave concerns. In this paper, the authors will assess what is occurring with AI in Visual Arts Education, outline positives and negatives, and provide recommendations addressed specifically for teachers working in the field regarding emerging AI usage from kindergarten to grade twelve levels as well as in higher education.展开更多
Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the applic...Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the application of LLMs in specific fields.Methods This research constructed a specialized knowledge base using clinical guidelines from the American Academy of Orthopaedic Surgeons(AAOS)and authoritative orthopedic publications.A total of 30 orthopedic-related questions covering aspects such as anatomical knowledge,disease diagnosis,fracture classification,treatment options,and surgical techniques were input into both the knowledge base-optimized and unoptimized versions of the GPT-4,ChatGLM,and Spark LLM,with their generated responses recorded.The overall quality,accuracy,and comprehensiveness of these responses were evaluated by 3 experienced orthopedic surgeons.Results Compared with their unoptimized LLMs,the optimized version of GPT-4 showed improvements of 15.3%in overall quality,12.5%in accuracy,and 12.8%in comprehensiveness;ChatGLM showed improvements of 24.8%,16.1%,and 19.6%,respectively;and Spark LLM showed improvements of 6.5%,14.5%,and 24.7%,respectively.Conclusion The optimization of knowledge bases significantly enhances the quality,accuracy,and comprehensiveness of the responses provided by the 3 models in the orthopedic field.Therefore,knowledge base optimization is an effective method for improving the performance of LLMs in specific fields.展开更多
The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite numb...The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite number of cases,this relationship is difficult to be revealed for complex irregular distributions,preventing design of such material structures to meet certain mechanical requirements.The noticeable developments of artificial intelligence(AI)algorithms in material design enables to detect the hidden structure-mechanics correlations which is essential for designing composite of complex structures.It is intriguing how these tools can assist composite design.Here,we focus on the rapid generation of bicontinuous composite structures together with the stress distribution in loading.We find that generative AI,enabled through fine-tuned Low Rank Adaptation models,can be trained with a few inputs to generate both synthetic composite structures and the corresponding von Mises stress distribution.The results show that this technique is convenient in generating massive composites designs with useful mechanical information that dictate stiffness,fracture and robustness of the material with one model,and such has to be done by several different experimental or simulation tests.This research offers valuable insights for the improvement of composite design with the goal of expanding the design space and automatic screening of composite designs for improved mechanical functions.展开更多
Artificial general intelligence (AGI) is the ability of an artificial intelligence (AI) agent to solve somewhat-arbitrary tasks in somewhat-arbitrary environments. Despite being a long-standing goal in the field of AI...Artificial general intelligence (AGI) is the ability of an artificial intelligence (AI) agent to solve somewhat-arbitrary tasks in somewhat-arbitrary environments. Despite being a long-standing goal in the field of AI, achieving AGI remains elusive. In this study, we empirically assessed the generalizability of AI agents by applying a deep reinforcement learning (DRL) approach to the medical domain. Our investigation involved examining how modifying the agent’s structure, task, and environment impacts its generality. Sample: An NIH chest X-ray dataset with 112,120 images and 15 medical conditions. We evaluated the agent’s performance on binary and multiclass classification tasks through a baseline model, a convolutional neural network model, a deep Q network model, and a proximal policy optimization model. Results: Our results suggest that DRL agents with the algorithmic flexibility to autonomously vary their macro/microstructures can generalize better across given tasks and environments.展开更多
The development of digital technology has brought about a substantial evolution in the multimedia field.The use of generative technologies to produce digital multimedia material is one of the newer developments in thi...The development of digital technology has brought about a substantial evolution in the multimedia field.The use of generative technologies to produce digital multimedia material is one of the newer developments in this field.The“Digital Generative Multimedia Tool Theory”(DGMTT)is therefore presented in this theoretical postulation by Timothy Ekeledirichukwu Onyejelem and Eric Msughter Aondover.It discusses and describes the principles behind the development and deployment of generative tools in multimedia creation.The DGMTT offers an all-encompassing structure for comprehending and evaluating the fundamentals and consequences of generative tools in the production of multimedia content.It provides information about the creation and use of these instruments,thereby promoting developments in the digital media industry.These tools create dynamic and interactive multimedia content by utilizing machine learning,artificial intelligence,and algorithms.This theory emphasizes how crucial it is to comprehend the fundamental ideas and principles of generative tools in order to use them efficiently when creating digital media content.A wide range of industries,including journalism,advertising,entertainment,education,and the arts,can benefit from the practical use of DGMTT.It gives artists the ability to use generative technologies to create unique and customized multimedia content for its viewers.展开更多
Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take ca...Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described.展开更多
It is essential to utilize deep-learning algorithms based on big data for the implementation of the new generation of artificial intelligence. Effective utilization of deep learning relies considerably on the number o...It is essential to utilize deep-learning algorithms based on big data for the implementation of the new generation of artificial intelligence. Effective utilization of deep learning relies considerably on the number of labeled samples, which restricts the application of deep learning in an environment with a small sample size. In this paper, we propose an approach based on a generative adversarial network (GAN) combined with a deep neural network (DNN). First, the original samples were divided into a training set and a test set. The GAN was trained with the training set to generate synthetic sample data, which enlarged the training set. Next, the DNN classifier was trained with the synthetic samples. Finally, the classifier was tested with the test set, and the effectiveness of the approach for multi-classification with a small sample size was validated by the indicators. As an empirical case, the approach was then applied to identify the stages of cancers with a small labeled sample size. The experimental results verified that the proposed approach achieved a greater accuracy than traditional methods. This research was an attempt to transform the classical statistical machine-learning classification method based on original samples into a deep-learning classification method based on data augmentation. The use of this approach will contribute to an expansion of application scenarios for the new generation of artificial intelligence based on deep learning, and to an increase in application effectiveness. This research is also expected to contribute to the comprehensive promotion of new-generation artificial intelligence.展开更多
Recent publications reveal the disturbing information that a minor edit to an algorithm being used for designing legitimate drug candidates redirected the program in a way that resulted in the surprising design of nov...Recent publications reveal the disturbing information that a minor edit to an algorithm being used for designing legitimate drug candidates redirected the program in a way that resulted in the surprising design of novel chemical warfare agent candidates. Although this outcome was not the result of nefarious intent, and appropriate chemical defense authorities were notified, the potential implications of some misapplication of a drug-design algorithm for nefarious purposes are clear. This Commentary summarizes how otherwise benign Artificial Intelligence (AI) algorithms used for drug discovery can be easily reversed to design novel chemical warfare agents for which no effective antidote will be available, or perhaps even envisioned.展开更多
The use of artificial intelligence plays a crucial role in developing precision medicine in nuclear medicine.Artificial intelligence refers to a field of computer science aimed at imitating the performance of tasks ty...The use of artificial intelligence plays a crucial role in developing precision medicine in nuclear medicine.Artificial intelligence refers to a field of computer science aimed at imitating the performance of tasks typically requiring human intelligence.From machine learning to generative adversarial networks,artificial intelligence automized the workflow of medical imaging.In this mini-review,we encapsulate artificial intelligence models and their use in nuclear medicine imaging workflow.展开更多
文摘With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generative AI technology and its potential in personalized learning,interactive content creation and adaptive assessment in education were introduced firstly.Then,the application case of generative AI tools in teaching content creation,scenario-based teaching content development,visual teaching content development,complex concept deconstruction and analogy,student-led application practice and other aspects in the teaching of Building Decoration Materials was discussed.Through the teaching experiment and effect evaluation,the positive influence of generative AI technology on the improvement of students'learning effect and teaching efficiency was verified.Finally,some thoughts and inspirations on the combination of educational theory and generative AI technology,the integration of teaching design and generative AI technology,and the practice cases and effect evaluation were put forward,and the importance of teacher role transformation and personalized learning path design was emphasized to provide theoretical and practical support for the innovative development of higher education.
基金General Project of Philosophy and Social Science Research in Jiangsu Universities in 2024“Research on the Mining and Integration Strategy of Ideological and Political Elements in Business English Major Courses”(2024SISZ0787)。
文摘This study explores the impact of generative artificial intelligence(AI)-enabled instruction on critical thinking in English essay writing among 1,050 first-year English majors across four colleges.Pedagogical strategies,including facilitating critical responses and emphasizing real-world application,are identified to enhance generative AI’s impact.Both qualitative and quantitative analyses reveal significant post-intervention improvements in critical thinking skills.This research contributes to understanding how generative AI can effectively foster critical thinking in educational settings.
文摘The emergence of generative artificial intelligence(AI)has had a huge impact on all areas of life,including the field of education.AI can assist teachers in cultivating talents and promoting personalized learning and teaching,but it also prevents individuals from thinking independently and creatively.In the era of generative AI,the rapid development of technology and its significant impact on the field of education are inevitable.There are many educational issues related to it,such as teaching methods,student training goals,teaching philosophy and purposes,and other educational issues,that require re-conceptualization and review.
文摘This study,drawing on the commonalities between generative artificial intelligence and foreign language writing instruction,outlines the core ideology of digital humanities-based college English writing instruction,including auxiliary use of generative artificial intelligence tools,primary focus on humanistic education,and the re-production of knowledge,aiming to foster students’critical thinking,collaborative skills,and creativity.Building on this foundation,the study delves into generative artificial intelligence tools applicable to different stages of process-genre writing and their strategic applications.The use of generative artificial intelligence tools is beneficial for students to present,discuss,and share writing content,encouraging them to enhance their writing,collaboration,critical thinking,and creative abilities through deep interaction with model essays and creative discourses.
文摘The primary objectives of medical safety education are to provide the public with essential knowledge about medications and to foster a scientific approach to drug usage.The era of using artificial intelligence to revolutionize medical safety education has already dawned,and ChatGPT and other generative artificial intelligence models have immense potential in this domain.Notably,they offer a wealth of knowledge,anonymity,continuous availability,and personalized services.However,the practical implementation of generative artificial intelligence models such as ChatGPT in medical safety education still faces several challenges,including concerns about the accuracy of information,legal responsibilities,and ethical obligations.Moving forward,it is crucial to intelligently upgrade ChatGPT by leveraging the strengths of existing medical practices.This task involves further integrating the model with real-life scenarios and proactively addressing ethical and security issues with the ultimate goal of providing the public with comprehensive,convenient,efficient,and personalized medical services.
文摘Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologies as Siri, Google, and Netflix deploy AI algorithms to answer questions, impart information, and provide recommendations. However, many individuals including originators and backers of AI have recently expressed grave concerns. In this paper, the authors will assess what is occurring with AI in Visual Arts Education, outline positives and negatives, and provide recommendations addressed specifically for teachers working in the field regarding emerging AI usage from kindergarten to grade twelve levels as well as in higher education.
基金supported by the National Natural Science Foundation of China(Grant No.81974355 and No.82172524).
文摘Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the application of LLMs in specific fields.Methods This research constructed a specialized knowledge base using clinical guidelines from the American Academy of Orthopaedic Surgeons(AAOS)and authoritative orthopedic publications.A total of 30 orthopedic-related questions covering aspects such as anatomical knowledge,disease diagnosis,fracture classification,treatment options,and surgical techniques were input into both the knowledge base-optimized and unoptimized versions of the GPT-4,ChatGLM,and Spark LLM,with their generated responses recorded.The overall quality,accuracy,and comprehensiveness of these responses were evaluated by 3 experienced orthopedic surgeons.Results Compared with their unoptimized LLMs,the optimized version of GPT-4 showed improvements of 15.3%in overall quality,12.5%in accuracy,and 12.8%in comprehensiveness;ChatGLM showed improvements of 24.8%,16.1%,and 19.6%,respectively;and Spark LLM showed improvements of 6.5%,14.5%,and 24.7%,respectively.Conclusion The optimization of knowledge bases significantly enhances the quality,accuracy,and comprehensiveness of the responses provided by the 3 models in the orthopedic field.Therefore,knowledge base optimization is an effective method for improving the performance of LLMs in specific fields.
基金supported by the National Science Foundation CA-REER Grant(Grant No.2145392)the startup funding at Syracuse Uni-versity for supporting the research work.
文摘The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite number of cases,this relationship is difficult to be revealed for complex irregular distributions,preventing design of such material structures to meet certain mechanical requirements.The noticeable developments of artificial intelligence(AI)algorithms in material design enables to detect the hidden structure-mechanics correlations which is essential for designing composite of complex structures.It is intriguing how these tools can assist composite design.Here,we focus on the rapid generation of bicontinuous composite structures together with the stress distribution in loading.We find that generative AI,enabled through fine-tuned Low Rank Adaptation models,can be trained with a few inputs to generate both synthetic composite structures and the corresponding von Mises stress distribution.The results show that this technique is convenient in generating massive composites designs with useful mechanical information that dictate stiffness,fracture and robustness of the material with one model,and such has to be done by several different experimental or simulation tests.This research offers valuable insights for the improvement of composite design with the goal of expanding the design space and automatic screening of composite designs for improved mechanical functions.
文摘Artificial general intelligence (AGI) is the ability of an artificial intelligence (AI) agent to solve somewhat-arbitrary tasks in somewhat-arbitrary environments. Despite being a long-standing goal in the field of AI, achieving AGI remains elusive. In this study, we empirically assessed the generalizability of AI agents by applying a deep reinforcement learning (DRL) approach to the medical domain. Our investigation involved examining how modifying the agent’s structure, task, and environment impacts its generality. Sample: An NIH chest X-ray dataset with 112,120 images and 15 medical conditions. We evaluated the agent’s performance on binary and multiclass classification tasks through a baseline model, a convolutional neural network model, a deep Q network model, and a proximal policy optimization model. Results: Our results suggest that DRL agents with the algorithmic flexibility to autonomously vary their macro/microstructures can generalize better across given tasks and environments.
文摘The development of digital technology has brought about a substantial evolution in the multimedia field.The use of generative technologies to produce digital multimedia material is one of the newer developments in this field.The“Digital Generative Multimedia Tool Theory”(DGMTT)is therefore presented in this theoretical postulation by Timothy Ekeledirichukwu Onyejelem and Eric Msughter Aondover.It discusses and describes the principles behind the development and deployment of generative tools in multimedia creation.The DGMTT offers an all-encompassing structure for comprehending and evaluating the fundamentals and consequences of generative tools in the production of multimedia content.It provides information about the creation and use of these instruments,thereby promoting developments in the digital media industry.These tools create dynamic and interactive multimedia content by utilizing machine learning,artificial intelligence,and algorithms.This theory emphasizes how crucial it is to comprehend the fundamental ideas and principles of generative tools in order to use them efficiently when creating digital media content.A wide range of industries,including journalism,advertising,entertainment,education,and the arts,can benefit from the practical use of DGMTT.It gives artists the ability to use generative technologies to create unique and customized multimedia content for its viewers.
文摘Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described.
基金the National Natural Science Foundation of China (91646102, L1724034, L16240452, L1524015, and 20905027)the MOE (Ministry of Education in China) Project of Humanities and Social Sciences (16JDGC011)+3 种基金the Chinese Academy of Engineering’s China Knowledge Center for Engineering Sciences and Technology Project (CKCEST-2018-1-13)the UK– China Industry Academia Partnership Programme (UK-CIAPP/260)Volvo-Supported Green Economy and Sustainable Development at Tsinghua University (20153000181)the Tsinghua Initiative Research Project (2016THZW).
文摘It is essential to utilize deep-learning algorithms based on big data for the implementation of the new generation of artificial intelligence. Effective utilization of deep learning relies considerably on the number of labeled samples, which restricts the application of deep learning in an environment with a small sample size. In this paper, we propose an approach based on a generative adversarial network (GAN) combined with a deep neural network (DNN). First, the original samples were divided into a training set and a test set. The GAN was trained with the training set to generate synthetic sample data, which enlarged the training set. Next, the DNN classifier was trained with the synthetic samples. Finally, the classifier was tested with the test set, and the effectiveness of the approach for multi-classification with a small sample size was validated by the indicators. As an empirical case, the approach was then applied to identify the stages of cancers with a small labeled sample size. The experimental results verified that the proposed approach achieved a greater accuracy than traditional methods. This research was an attempt to transform the classical statistical machine-learning classification method based on original samples into a deep-learning classification method based on data augmentation. The use of this approach will contribute to an expansion of application scenarios for the new generation of artificial intelligence based on deep learning, and to an increase in application effectiveness. This research is also expected to contribute to the comprehensive promotion of new-generation artificial intelligence.
文摘Recent publications reveal the disturbing information that a minor edit to an algorithm being used for designing legitimate drug candidates redirected the program in a way that resulted in the surprising design of novel chemical warfare agent candidates. Although this outcome was not the result of nefarious intent, and appropriate chemical defense authorities were notified, the potential implications of some misapplication of a drug-design algorithm for nefarious purposes are clear. This Commentary summarizes how otherwise benign Artificial Intelligence (AI) algorithms used for drug discovery can be easily reversed to design novel chemical warfare agents for which no effective antidote will be available, or perhaps even envisioned.
文摘The use of artificial intelligence plays a crucial role in developing precision medicine in nuclear medicine.Artificial intelligence refers to a field of computer science aimed at imitating the performance of tasks typically requiring human intelligence.From machine learning to generative adversarial networks,artificial intelligence automized the workflow of medical imaging.In this mini-review,we encapsulate artificial intelligence models and their use in nuclear medicine imaging workflow.