Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including pa...Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including patients with inflammatory bowel diseases(IBD).However,significant ethical issues and pitfalls exist in innovative LLM tools.The hype generated by such systems may lead to unweighted patient trust in these systems.Therefore,it is necessary to understand whether LLMs(trendy ones,such as ChatGPT)can produce plausible medical information(MI)for patients.This review examined ChatGPT’s potential to provide MI regarding questions commonly addressed by patients with IBD to their gastroenterologists.From the review of the outputs provided by ChatGPT,this tool showed some attractive potential while having significant limitations in updating and detailing information and providing inaccurate information in some cases.Further studies and refinement of the ChatGPT,possibly aligning the outputs with the leading medical evidence provided by reliable databases,are needed.展开更多
Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requir...Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.展开更多
As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects in...As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain.This review paper systematically investigates the role of ChatGPT in diverse NLP tasks,including information extraction,Name Entity Recognition(NER),event extraction,relation extraction,Part of Speech(PoS)tagging,text classification,sentiment analysis,emotion recognition and text annotation.The novelty of this work lies in its comprehensive analysis of the existing literature,addressing a critical gap in understanding ChatGPT’s adaptability,limitations,and optimal application.In this paper,we employed a systematic stepwise approach following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)framework to direct our search process and seek relevant studies.Our review reveals ChatGPT’s significant potential in enhancing various NLP tasks.Its adaptability in information extraction tasks,sentiment analysis,and text classification showcases its ability to comprehend diverse contexts and extract meaningful details.Additionally,ChatGPT’s flexibility in annotation tasks reducesmanual efforts and accelerates the annotation process,making it a valuable asset in NLP development and research.Furthermore,GPT-4 and prompt engineering emerge as a complementary mechanism,empowering users to guide the model and enhance overall accuracy.Despite its promising potential,challenges persist.The performance of ChatGP Tneeds tobe testedusingmore extensivedatasets anddiversedata structures.Subsequently,its limitations in handling domain-specific language and the need for fine-tuning in specific applications highlight the importance of further investigations to address these issues.展开更多
This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like r...This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like reasoning+action and retrieval-augmented generation to improve accuracy and reliability.Emphasizing that simple question and answer testing is insufficient,it calls for more nuanced evaluation methods to truly gauge large language models’capabilities in clinical applications.展开更多
Telecommunication has undergone significant transformations due to the continuous advancements in internet technology,mobile devices,competitive pricing,and changing customer preferences.Specifically,the most recent i...Telecommunication has undergone significant transformations due to the continuous advancements in internet technology,mobile devices,competitive pricing,and changing customer preferences.Specifically,the most recent iteration of OpenAI’s large language model chat generative pre-trained transformer(ChatGPT)has the potential to propel innovation and bolster operational performance in the telecommunications sector.Nowadays,the exploration of network resource management,control,and operation is still in the initial stage.In this paper,we propose a novel network artificial intelligence architecture named language model for network traffic(NetLM),a large language model based on a transformer designed to understand sequence structures in the network packet data and capture their underlying dynamics.The continual convergence of knowledge space and artificial intelligence(AI)technologies constitutes the core of intelligent network management and control.Multi-modal representation learning is used to unify the multi-modal information of network indicator data,traffic data,and text data into the same feature space.Furthermore,a NetLM-based control policy generation framework is proposed to refine intent incrementally through different abstraction levels.Finally,some potential cases are provided that NetLM can benefit the telecom industry.展开更多
文摘Artificial intelligence is increasingly entering everyday healthcare.Large language model(LLM)systems such as Chat Generative Pre-trained Transformer(ChatGPT)have become potentially accessible to everyone,including patients with inflammatory bowel diseases(IBD).However,significant ethical issues and pitfalls exist in innovative LLM tools.The hype generated by such systems may lead to unweighted patient trust in these systems.Therefore,it is necessary to understand whether LLMs(trendy ones,such as ChatGPT)can produce plausible medical information(MI)for patients.This review examined ChatGPT’s potential to provide MI regarding questions commonly addressed by patients with IBD to their gastroenterologists.From the review of the outputs provided by ChatGPT,this tool showed some attractive potential while having significant limitations in updating and detailing information and providing inaccurate information in some cases.Further studies and refinement of the ChatGPT,possibly aligning the outputs with the leading medical evidence provided by reliable databases,are needed.
文摘Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.
文摘As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain.This review paper systematically investigates the role of ChatGPT in diverse NLP tasks,including information extraction,Name Entity Recognition(NER),event extraction,relation extraction,Part of Speech(PoS)tagging,text classification,sentiment analysis,emotion recognition and text annotation.The novelty of this work lies in its comprehensive analysis of the existing literature,addressing a critical gap in understanding ChatGPT’s adaptability,limitations,and optimal application.In this paper,we employed a systematic stepwise approach following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)framework to direct our search process and seek relevant studies.Our review reveals ChatGPT’s significant potential in enhancing various NLP tasks.Its adaptability in information extraction tasks,sentiment analysis,and text classification showcases its ability to comprehend diverse contexts and extract meaningful details.Additionally,ChatGPT’s flexibility in annotation tasks reducesmanual efforts and accelerates the annotation process,making it a valuable asset in NLP development and research.Furthermore,GPT-4 and prompt engineering emerge as a complementary mechanism,empowering users to guide the model and enhance overall accuracy.Despite its promising potential,challenges persist.The performance of ChatGP Tneeds tobe testedusingmore extensivedatasets anddiversedata structures.Subsequently,its limitations in handling domain-specific language and the need for fine-tuning in specific applications highlight the importance of further investigations to address these issues.
文摘This letter evaluates the article by Gravina et al on ChatGPT’s potential in providing medical information for inflammatory bowel disease patients.While promising,it highlights the need for advanced techniques like reasoning+action and retrieval-augmented generation to improve accuracy and reliability.Emphasizing that simple question and answer testing is insufficient,it calls for more nuanced evaluation methods to truly gauge large language models’capabilities in clinical applications.
基金This work was supported by the National Natural Science Foundation of China under Grants of 62071067,62101064,62201072,62171057,and 62001054,Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘Telecommunication has undergone significant transformations due to the continuous advancements in internet technology,mobile devices,competitive pricing,and changing customer preferences.Specifically,the most recent iteration of OpenAI’s large language model chat generative pre-trained transformer(ChatGPT)has the potential to propel innovation and bolster operational performance in the telecommunications sector.Nowadays,the exploration of network resource management,control,and operation is still in the initial stage.In this paper,we propose a novel network artificial intelligence architecture named language model for network traffic(NetLM),a large language model based on a transformer designed to understand sequence structures in the network packet data and capture their underlying dynamics.The continual convergence of knowledge space and artificial intelligence(AI)technologies constitutes the core of intelligent network management and control.Multi-modal representation learning is used to unify the multi-modal information of network indicator data,traffic data,and text data into the same feature space.Furthermore,a NetLM-based control policy generation framework is proposed to refine intent incrementally through different abstraction levels.Finally,some potential cases are provided that NetLM can benefit the telecom industry.