Annotating named entity recognition (NER) training corpora is a costly but necessary process for supervised NER approaches. This paper presents a general framework to generate large-scale NER training data from para...Annotating named entity recognition (NER) training corpora is a costly but necessary process for supervised NER approaches. This paper presents a general framework to generate large-scale NER training data from parallel corpora. In our method, we first employ a high performance NER system on one side of a bilingual corpus. Then, we project the named entity (NE) labels to the other side according to the word level alignments. Finally, we propose several strategies to select high-quality auto-labeled NER training data. We apply our approach to Chinese NER using an English-Chinese parallel corpus. Experimental results show that our approach can collect high-quality labeled data and can help improve Chinese NER.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 61133012, 61273321) and the National 863 Leading Technology Research Project (2012AA011102). Special thanks to Wanxiang Che, Yanyan Zhao, Wei He, Fikadu Gemechu, Yuhang Guo, Zhenghua Li, Meishan Zhang and the anonymous reviewers for insightful comments and suggestions.
文摘Annotating named entity recognition (NER) training corpora is a costly but necessary process for supervised NER approaches. This paper presents a general framework to generate large-scale NER training data from parallel corpora. In our method, we first employ a high performance NER system on one side of a bilingual corpus. Then, we project the named entity (NE) labels to the other side according to the word level alignments. Finally, we propose several strategies to select high-quality auto-labeled NER training data. We apply our approach to Chinese NER using an English-Chinese parallel corpus. Experimental results show that our approach can collect high-quality labeled data and can help improve Chinese NER.