For fixed speed wind turbines, the connection of its squirrel cage induction generator (SCIG) to the grid leads to inrush current which can reach an average of 2 p.u. up to 2.5 p.u. in higher wind speed even by using ...For fixed speed wind turbines, the connection of its squirrel cage induction generator (SCIG) to the grid leads to inrush current which can reach an average of 2 p.u. up to 2.5 p.u. in higher wind speed even by using a soft starter. We propose in this paper a new soft starting of squirrel cage induction generator based wind turbine connected to the grid. Our strategy overcomes such transient instability problems and pinpoints rapidly synchronous speed regardless the wind speed acting on pitch angle. The proposed strategy ensures at least 50% reduction of inrush current and 18% gain of WTG starting time. A state model of the system is given including the wind turbine model and the SCIG model in the synchronous reference frame. Simulation results are analysed and compared to the classic coupling procedure.展开更多
This paper proposes a novel framework that enables the simultaneous coordination of the controllers of doubly fed induction generators(DFIGs) and synchronous generators(SGs).The proposed coordination approach is based...This paper proposes a novel framework that enables the simultaneous coordination of the controllers of doubly fed induction generators(DFIGs) and synchronous generators(SGs).The proposed coordination approach is based on the zero dynamics method aims at enhancing the transient stability of multi-machine power systems under a wide range of operating conditions. The proposed approach was implemented to the IEEE39-bus power systems. Transient stability margin measured in terms of critical clearing time along with eigenvalue analysis and time domain simulations were considered in the performance assessment. The obtained results were also compared to those achieved using a conventional power system stabilizer/power oscillation(PSS/POD) technique and the interconnection and damping assignment passivity-based controller(IDA-PBC). The performance analysis confirmed the ability of the proposed approach to enhance damping and improve system’s transient stability margin under a wide range of operating conditions.展开更多
Virtual synchronous generators(VSGs)can provide voltage and frequency support to power systems due to their inertial and damping features.Unfortunately,power angle stability and fault current limitations are still cha...Virtual synchronous generators(VSGs)can provide voltage and frequency support to power systems due to their inertial and damping features.Unfortunately,power angle stability and fault current limitations are still challenging aspects of VSGs under large disturbances.Power angle stability and fault current limitations are indispensable for the safe operation of a VSG.However,in existing studies,these aspects are mostly solved as two independent problems.In this paper,the comprehensive transient stability enhancement(CTSE)control strategy for a VSG,considering power angle stability and fault current limitations is proposed.With a CTSE control,VSG's transient power angle stability is guaranteed.In addition,the steady-state and impulse components of the fault current are fully limited.Furthermore,CTSE control parameters adapted to different fault degrees are presented.Finally,simulation and experimental tests are performed to validate the performance of the proposed method.展开更多
针对构网型变流器(grid-forming voltage source converter,GFM-VSC)系统在大扰动下暂态稳定问题,现有研究未能充分考虑电力电子电源暂态快速响应与控制可塑的特点。为此,以GFM-VSC为对象,借助等面积法原理与相平面图法,从能量角度揭示...针对构网型变流器(grid-forming voltage source converter,GFM-VSC)系统在大扰动下暂态稳定问题,现有研究未能充分考虑电力电子电源暂态快速响应与控制可塑的特点。为此,以GFM-VSC为对象,借助等面积法原理与相平面图法,从能量角度揭示了其暂态响应机制与传统同步机系统的差异,分析了控制塑造下GFM-VSC系统的暂态稳定机理;然后,针对大扰动下易于触发的限幅环节,分析了系统无法自主退出限幅而失稳的机制,并提出了附带电流分配系数的改进限幅策略,有效增强了系统暂态稳定性。最后,通过仿真验证了理论分析与改进方法的正确性。展开更多
文摘For fixed speed wind turbines, the connection of its squirrel cage induction generator (SCIG) to the grid leads to inrush current which can reach an average of 2 p.u. up to 2.5 p.u. in higher wind speed even by using a soft starter. We propose in this paper a new soft starting of squirrel cage induction generator based wind turbine connected to the grid. Our strategy overcomes such transient instability problems and pinpoints rapidly synchronous speed regardless the wind speed acting on pitch angle. The proposed strategy ensures at least 50% reduction of inrush current and 18% gain of WTG starting time. A state model of the system is given including the wind turbine model and the SCIG model in the synchronous reference frame. Simulation results are analysed and compared to the classic coupling procedure.
文摘This paper proposes a novel framework that enables the simultaneous coordination of the controllers of doubly fed induction generators(DFIGs) and synchronous generators(SGs).The proposed coordination approach is based on the zero dynamics method aims at enhancing the transient stability of multi-machine power systems under a wide range of operating conditions. The proposed approach was implemented to the IEEE39-bus power systems. Transient stability margin measured in terms of critical clearing time along with eigenvalue analysis and time domain simulations were considered in the performance assessment. The obtained results were also compared to those achieved using a conventional power system stabilizer/power oscillation(PSS/POD) technique and the interconnection and damping assignment passivity-based controller(IDA-PBC). The performance analysis confirmed the ability of the proposed approach to enhance damping and improve system’s transient stability margin under a wide range of operating conditions.
基金supported by the National Natural Science Foundation of China(51907057,52077072).
文摘Virtual synchronous generators(VSGs)can provide voltage and frequency support to power systems due to their inertial and damping features.Unfortunately,power angle stability and fault current limitations are still challenging aspects of VSGs under large disturbances.Power angle stability and fault current limitations are indispensable for the safe operation of a VSG.However,in existing studies,these aspects are mostly solved as two independent problems.In this paper,the comprehensive transient stability enhancement(CTSE)control strategy for a VSG,considering power angle stability and fault current limitations is proposed.With a CTSE control,VSG's transient power angle stability is guaranteed.In addition,the steady-state and impulse components of the fault current are fully limited.Furthermore,CTSE control parameters adapted to different fault degrees are presented.Finally,simulation and experimental tests are performed to validate the performance of the proposed method.
文摘针对构网型变流器(grid-forming voltage source converter,GFM-VSC)系统在大扰动下暂态稳定问题,现有研究未能充分考虑电力电子电源暂态快速响应与控制可塑的特点。为此,以GFM-VSC为对象,借助等面积法原理与相平面图法,从能量角度揭示了其暂态响应机制与传统同步机系统的差异,分析了控制塑造下GFM-VSC系统的暂态稳定机理;然后,针对大扰动下易于触发的限幅环节,分析了系统无法自主退出限幅而失稳的机制,并提出了附带电流分配系数的改进限幅策略,有效增强了系统暂态稳定性。最后,通过仿真验证了理论分析与改进方法的正确性。