When studying the phenomenon of the induced electromotive force, which originates from Faraday’s unipolar inductor, the contrast between Faraday’s view of the magnetic field dynamic lines and the theory of relativit...When studying the phenomenon of the induced electromotive force, which originates from Faraday’s unipolar inductor, the contrast between Faraday’s view of the magnetic field dynamic lines and the theory of relativity is revealed. In order to remove this contradiction, this phenomenon was studied in depth, theoretically and experimentally, using an experimental setup similar to Faraday’s. Calculations of the induced electromotive force, based on relativity on the one hand and on Faraday’s view on the other were made with the help of measurements of the magnetic field components. Accurate magnetic field measurements are confirmed by analytical calculations. Precise-induced electromotive force measurements confirmed Faraday’s view and contradicted the theory of relativity.展开更多
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or...Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.展开更多
This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fa...This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.展开更多
The resonances of parametric vibration with forced vibration isanalyzed, the bifurca- tion equation of the system is obtained andthe singularity analysis is made. Some of the laws and phe- nomenaare revealed. The tran...The resonances of parametric vibration with forced vibration isanalyzed, the bifurca- tion equation of the system is obtained andthe singularity analysis is made. Some of the laws and phe- nomenaare revealed. The transition variety and bifurcation diagram of thephysical parameteric plane are given. the results can be used inengineering.展开更多
A novel cooling system with cooling channels is proposed for the stator of 3MW wind-driven generator.An experimental platform is built to investigate the performance of the cooling system with different loads.At30%,50...A novel cooling system with cooling channels is proposed for the stator of 3MW wind-driven generator.An experimental platform is built to investigate the performance of the cooling system with different loads.At30%,50% or 80% generator loads,the temperatures meet the design requirement.However,it is a little over the requirement at 100%load,duo to experimental errors and some unknown thermal resistances.In the test at 100%load,the developing trends of the parameters of these two generators are similar and only minor differences occurs when they reach steady state our work can be benefit for the design and improvement of MW wind-driven generator cooling solutions.展开更多
The breakdown voltage plays an important role in evaluating residual life of stator insulation in generator.In this paper,we discussed BP neural network that was used to predict the breakdown voltage of stator insulat...The breakdown voltage plays an important role in evaluating residual life of stator insulation in generator.In this paper,we discussed BP neural network that was used to predict the breakdown voltage of stator insulation in generator of 300MW/18kV.At first the neural network has been trained by the samples that include the varieties of dielectric loss factor tanδ,the partial discharge parameters and breakdown voltage.Then we tried to predict the breakdown voltage of samples and stator insulations subjected to multi-stress aging by the trained neural network.We found that it's feasible and accurate to predict the voltage.This method can be applied to predict breakdown voltage of other generators which have the same insulation structure and material.展开更多
One of the solutions to reduce fuel consumption of diesel generators (DG) is to adapt the rotational speed to mechanical torque of the crankshaft. When load power decreases, a reduction in both mechanical torque and r...One of the solutions to reduce fuel consumption of diesel generators (DG) is to adapt the rotational speed to mechanical torque of the crankshaft. When load power decreases, a reduction in both mechanical torque and rotational speed of the diesel engine will maintain the combustion efficiency near the levels of the nominal regime. Accordingly, the generator itself should operate at a variable speed which normally requires power electronics converters. In this paper, we are exploring a new generator concept that uses a stator rotating in opposite direction to the rotor such as the relative velocity between the two components remains constant when diesel engine slows down. The stator itself is driven by a compensator synchronous motor (CM) such as the relative velocity of the rotor is constant, eliminating as such sophisticated power electronics. The model developed for the synchronous machine with a rotating stator is based on Park’s transformation. This new concept was modelled using MATLAB software. Experimental analysis has been conducted using a 500-kW diesel GENSET equipped with a permanent magnet synchronous generator (PMSG). The numerical and experimental results are in good agreement and demonstrate that fuel consumption is reduced with a rotating-mode stator for PMSG during low electrical loads.展开更多
The axial flux permanent magnet(AFPM)generator with double-sided internal stator structure is highly suitable for vertical axis wind turbines due to its high power density.The performance of the AFPM generator with do...The axial flux permanent magnet(AFPM)generator with double-sided internal stator structure is highly suitable for vertical axis wind turbines due to its high power density.The performance of the AFPM generator with double-sided internal stator structure can be improved by the reasonable design of electromagnetic parameters.To further improve the overall performance of the AFPM generator with double-sided internal stator structure,multivariable(coil widthω_(c),permanent magnet thickness h,pole arc coefficient α_(p) and working air gap l_(g))and multi-objective(generator efficiencyη,total harmonic distortion of the voltage THD and induced electromotive force amplitude EMF)functional relationships are innovatively established.Orthogonal analysis,mean analysis and variance analysis are performed on the influence parameters by combining the Taguchi method and response surface methodology to study the influence degrees of each influence parameter on the optimization objectives to determine the most appropriate electromagnetic parameters.The optimization results are verified by 3D finite element analysis.The optimized APFM generator with double-sided internal stator structure exhibits superior economy,stronger magnetic density,higher efficiency and improved power quality.展开更多
A double-shell model of hydroelectric-generator stator system was established. Applying the theory of mechano-electric analytical dynamics theory, the nonlinear vibration equation of magnetism and solid coupling of hy...A double-shell model of hydroelectric-generator stator system was established. Applying the theory of mechano-electric analytical dynamics theory, the nonlinear vibration equation of magnetism and solid coupling of hydroelectric-generator stator system, under steadily balanced three-phases operating condition, was obtained. According to the method of multiple scales for nonlinear oscillations, the double resonances of magnetism and solid coupling of hydroelectric-generator stater system, were investigated. It is pointed out that the system has abundant dynamics phenomenon including the attendant jumps and coexistence of multiple stable motions.展开更多
A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power...A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.展开更多
We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotatio...We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotational asymmetry of the quantum state, the ratio of Os to ls varies with the measurement bases. The experimental partners can then use their measurement outcomes to generate the biased random bit string. The bias of their bit string can be adjusted by altering their choices of measurement bases. When this protocol is implemented in a device-independent way, we show that the bias of the bit string can still be ensured under the collective attack.展开更多
In this paper modelling and analysis in autonomous mode of dual three-phase induction generator (DTPIG) with a new algorithm have been done. We develop the steady state model of a dual three-phase self-excited inducti...In this paper modelling and analysis in autonomous mode of dual three-phase induction generator (DTPIG) with a new algorithm have been done. We develop the steady state model of a dual three-phase self-excited induction generator for stand-alone renewable generation dispensing with the segregating real and imaginary components of the complex impedance of the induction generator. The obtained admittance yields the adequate magnetizing reactance and the frequency. These two key parameters are then used to compute the self-excitation process requirements in terms of the prime mover speed, the capacitance and the load impedance on the one hand and to predict the generator steady state performance parameters on the other. Steady state performances and characteristics of different configurations are clearly examined and compared. The analytical results are found to be in good agreement with experimental results.展开更多
This paper investigates the approach of presenting groups by generators and relations from an original angle. It starts by interpreting this familiar concept with the novel notion of “formal words” created by juxtap...This paper investigates the approach of presenting groups by generators and relations from an original angle. It starts by interpreting this familiar concept with the novel notion of “formal words” created by juxtaposing letters in a set. Taking that as basis, several fundamental results related to free groups, such as Dyck’s Theorem, are proven. Then, the paper highlights three creative applications of the concept in classifying finite groups of a fixed order, representing all dihedral groups geometrically, and analyzing knots topologically. All three applications are of considerable significance in their respective topic areas and serve to illustrate the advantages and certain limitations of the approach flexibly and comprehensively.展开更多
We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic...We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.展开更多
概率密度演化方法(probability density evolution equation,PDEM)为非线性随机结构的动力响应分析提供了新的途径.通过PDEM获得结构响应概率密度函数(probability density function,PDF)的关键步骤是求解广义概率密度演化方程(generali...概率密度演化方法(probability density evolution equation,PDEM)为非线性随机结构的动力响应分析提供了新的途径.通过PDEM获得结构响应概率密度函数(probability density function,PDF)的关键步骤是求解广义概率密度演化方程(generalized probability density evolution equation,GDEE).对于GDEE的求解通常采用有限差分法,然而,由于GDEE是初始条件间断的变系数一阶双曲偏微分方程,通过有限差分法求解GDEE可能会面临网格敏感性问题、数值色散和数值耗散现象.文章从全局逼近的角度出发,基于Chebyshev拟谱法为GDEE构造了全局插值格式,解决了数值色散、数值耗散以及网格敏感性问题.考虑GDEE的系数在每个时间步长均为常数,推导了GDEE在每一个时间步长内时域上的序列矩阵指数解.由于序列矩阵指数解形式上是解析的,从而很好地克服了数值稳定性问题.两个数值算例表明,通过Chebyshev拟谱法结合时域的序列矩阵指数解求解GDEE得到的结果与精确解以及Monte Carlo模拟的结果非常吻合,且数值耗散和数值色散现象几乎可以忽略.此外,拟谱法具有高效的收敛性且序列矩阵指数解不受CFL (Courant-Friedrichs-Lewy)条件的限制,因此该方法具有良好的数值稳定性和计算效率.展开更多
This paper presents a proper splitting iterative method for comparing the general restricted linear euqations Ax=b, x ∈T (where, b ∈AT, and T is an arbitrary but fixed subspace of C<sup>m</sup>) and th...This paper presents a proper splitting iterative method for comparing the general restricted linear euqations Ax=b, x ∈T (where, b ∈AT, and T is an arbitrary but fixed subspace of C<sup>m</sup>) and the generalized in A<sub>T,S</sub> For the special case when b ∈AT and dim(T)=dim(AT), this splitting iterative methverse A<sub>T,S</sub> hod converges to A<sub>T,S</sub>b (the unique solution of the general restricted system Ax=bx ∈T).展开更多
This paper summarized the recent development on Herglotz’s generalized variational principle and its symmetries and conserved quantities for nonconservative dynamical systems.Taking Lagrangian mechanics,Hamiltonian m...This paper summarized the recent development on Herglotz’s generalized variational principle and its symmetries and conserved quantities for nonconservative dynamical systems.Taking Lagrangian mechanics,Hamiltonian mechanics and Birkhoffian mechanics as three research frames,we introduce Herglotz’s generalized variational principle,dynamical equations of Herglotz type,Noether symmetry and conserved quantities,and their generalization to time-delay dynamics,fractional dynamics and time-scale dynamics,and put forward some problems as suggestions for future research.展开更多
The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage mod...The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage model is affected by integral initial values and integral drift,that based on current model is affected by the parameters of PMSM,so a new stator flux observation method is proposed based on an improved secondorder generalized integrator( SOGI). Compared to the stator flux observation method based on the conventional SOGI,the proposed method can not only overcome the influence of integral initial values and integral drift,but also completely eliminate the DC offset's influence. Therefore,the observation accuracy of stator flux is further improved. The simulation and experimental results both show that the proposed method has a higher stator flux and electromagnetic torque observation precision.展开更多
文摘When studying the phenomenon of the induced electromotive force, which originates from Faraday’s unipolar inductor, the contrast between Faraday’s view of the magnetic field dynamic lines and the theory of relativity is revealed. In order to remove this contradiction, this phenomenon was studied in depth, theoretically and experimentally, using an experimental setup similar to Faraday’s. Calculations of the induced electromotive force, based on relativity on the one hand and on Faraday’s view on the other were made with the help of measurements of the magnetic field components. Accurate magnetic field measurements are confirmed by analytical calculations. Precise-induced electromotive force measurements confirmed Faraday’s view and contradicted the theory of relativity.
基金This project is supported by Provincial Science Foundation of Education Office of Hebei(No.Z2004455)Youth Research Fundation of State Power of China(No.SPQKJ02-10).
文摘Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.
基金supported in part by the National Natural Science Foundation of China(52177042)Natural Science Foundation of Hebei Province(E2020502031)+1 种基金the Fundamental Research Funds for the Central Universities(2017MS151),Suzhou Social Developing Innovation Project of Science and Technology(SS202134)the Top Youth Talent Support Program of Hebei Province([2018]-27).
文摘This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.
基金National Natural Science FoundationDoctoral Programme Foundation of Institution of Higher Education of China
文摘The resonances of parametric vibration with forced vibration isanalyzed, the bifurca- tion equation of the system is obtained andthe singularity analysis is made. Some of the laws and phe- nomenaare revealed. The transition variety and bifurcation diagram of thephysical parameteric plane are given. the results can be used inengineering.
文摘A novel cooling system with cooling channels is proposed for the stator of 3MW wind-driven generator.An experimental platform is built to investigate the performance of the cooling system with different loads.At30%,50% or 80% generator loads,the temperatures meet the design requirement.However,it is a little over the requirement at 100%load,duo to experimental errors and some unknown thermal resistances.In the test at 100%load,the developing trends of the parameters of these two generators are similar and only minor differences occurs when they reach steady state our work can be benefit for the design and improvement of MW wind-driven generator cooling solutions.
基金This research was supported by the Key Technology R&D Programof State Power Corporation of China During the Tenth-Five-Year Plan Period.
文摘The breakdown voltage plays an important role in evaluating residual life of stator insulation in generator.In this paper,we discussed BP neural network that was used to predict the breakdown voltage of stator insulation in generator of 300MW/18kV.At first the neural network has been trained by the samples that include the varieties of dielectric loss factor tanδ,the partial discharge parameters and breakdown voltage.Then we tried to predict the breakdown voltage of samples and stator insulations subjected to multi-stress aging by the trained neural network.We found that it's feasible and accurate to predict the voltage.This method can be applied to predict breakdown voltage of other generators which have the same insulation structure and material.
文摘One of the solutions to reduce fuel consumption of diesel generators (DG) is to adapt the rotational speed to mechanical torque of the crankshaft. When load power decreases, a reduction in both mechanical torque and rotational speed of the diesel engine will maintain the combustion efficiency near the levels of the nominal regime. Accordingly, the generator itself should operate at a variable speed which normally requires power electronics converters. In this paper, we are exploring a new generator concept that uses a stator rotating in opposite direction to the rotor such as the relative velocity between the two components remains constant when diesel engine slows down. The stator itself is driven by a compensator synchronous motor (CM) such as the relative velocity of the rotor is constant, eliminating as such sophisticated power electronics. The model developed for the synchronous machine with a rotating stator is based on Park’s transformation. This new concept was modelled using MATLAB software. Experimental analysis has been conducted using a 500-kW diesel GENSET equipped with a permanent magnet synchronous generator (PMSG). The numerical and experimental results are in good agreement and demonstrate that fuel consumption is reduced with a rotating-mode stator for PMSG during low electrical loads.
基金funded by Project Supported by Postdoctoral Science Foundation of Jiangsu Province,Grant No.2019k237.
文摘The axial flux permanent magnet(AFPM)generator with double-sided internal stator structure is highly suitable for vertical axis wind turbines due to its high power density.The performance of the AFPM generator with double-sided internal stator structure can be improved by the reasonable design of electromagnetic parameters.To further improve the overall performance of the AFPM generator with double-sided internal stator structure,multivariable(coil widthω_(c),permanent magnet thickness h,pole arc coefficient α_(p) and working air gap l_(g))and multi-objective(generator efficiencyη,total harmonic distortion of the voltage THD and induced electromotive force amplitude EMF)functional relationships are innovatively established.Orthogonal analysis,mean analysis and variance analysis are performed on the influence parameters by combining the Taguchi method and response surface methodology to study the influence degrees of each influence parameter on the optimization objectives to determine the most appropriate electromagnetic parameters.The optimization results are verified by 3D finite element analysis.The optimized APFM generator with double-sided internal stator structure exhibits superior economy,stronger magnetic density,higher efficiency and improved power quality.
文摘A double-shell model of hydroelectric-generator stator system was established. Applying the theory of mechano-electric analytical dynamics theory, the nonlinear vibration equation of magnetism and solid coupling of hydroelectric-generator stator system, under steadily balanced three-phases operating condition, was obtained. According to the method of multiple scales for nonlinear oscillations, the double resonances of magnetism and solid coupling of hydroelectric-generator stater system, were investigated. It is pointed out that the system has abundant dynamics phenomenon including the attendant jumps and coexistence of multiple stable motions.
文摘A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61378011,U1204616 and 11447143the Program for Science and Technology Innovation Talents in Universities of Henan Province under Grant No 2012HASTIT028the Program for Science and Technology Innovation Research Team in University of Henan Province under Grant No 13IRTSTHN020
文摘We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotational asymmetry of the quantum state, the ratio of Os to ls varies with the measurement bases. The experimental partners can then use their measurement outcomes to generate the biased random bit string. The bias of their bit string can be adjusted by altering their choices of measurement bases. When this protocol is implemented in a device-independent way, we show that the bias of the bit string can still be ensured under the collective attack.
文摘In this paper modelling and analysis in autonomous mode of dual three-phase induction generator (DTPIG) with a new algorithm have been done. We develop the steady state model of a dual three-phase self-excited induction generator for stand-alone renewable generation dispensing with the segregating real and imaginary components of the complex impedance of the induction generator. The obtained admittance yields the adequate magnetizing reactance and the frequency. These two key parameters are then used to compute the self-excitation process requirements in terms of the prime mover speed, the capacitance and the load impedance on the one hand and to predict the generator steady state performance parameters on the other. Steady state performances and characteristics of different configurations are clearly examined and compared. The analytical results are found to be in good agreement with experimental results.
文摘This paper investigates the approach of presenting groups by generators and relations from an original angle. It starts by interpreting this familiar concept with the novel notion of “formal words” created by juxtaposing letters in a set. Taking that as basis, several fundamental results related to free groups, such as Dyck’s Theorem, are proven. Then, the paper highlights three creative applications of the concept in classifying finite groups of a fixed order, representing all dihedral groups geometrically, and analyzing knots topologically. All three applications are of considerable significance in their respective topic areas and serve to illustrate the advantages and certain limitations of the approach flexibly and comprehensively.
基金supported by the National Natural Science Foundation of China(No.41204091)New Teachers’ Fund for Doctor Stations,the Ministry of Education(No.20105122120001)Science and Technology Support Program from Science and Technology Department of Sichuan Province(No.2011GZ0244)
文摘We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.
文摘概率密度演化方法(probability density evolution equation,PDEM)为非线性随机结构的动力响应分析提供了新的途径.通过PDEM获得结构响应概率密度函数(probability density function,PDF)的关键步骤是求解广义概率密度演化方程(generalized probability density evolution equation,GDEE).对于GDEE的求解通常采用有限差分法,然而,由于GDEE是初始条件间断的变系数一阶双曲偏微分方程,通过有限差分法求解GDEE可能会面临网格敏感性问题、数值色散和数值耗散现象.文章从全局逼近的角度出发,基于Chebyshev拟谱法为GDEE构造了全局插值格式,解决了数值色散、数值耗散以及网格敏感性问题.考虑GDEE的系数在每个时间步长均为常数,推导了GDEE在每一个时间步长内时域上的序列矩阵指数解.由于序列矩阵指数解形式上是解析的,从而很好地克服了数值稳定性问题.两个数值算例表明,通过Chebyshev拟谱法结合时域的序列矩阵指数解求解GDEE得到的结果与精确解以及Monte Carlo模拟的结果非常吻合,且数值耗散和数值色散现象几乎可以忽略.此外,拟谱法具有高效的收敛性且序列矩阵指数解不受CFL (Courant-Friedrichs-Lewy)条件的限制,因此该方法具有良好的数值稳定性和计算效率.
基金This project is supported by Science and Technology Foundation of Shanghai Higher Eduction,Doctoral Program Foundation of Higher Education in China.National Nature Science Foundation of China and Youth Science Foundation of Universities in Shanghai.
文摘This paper presents a proper splitting iterative method for comparing the general restricted linear euqations Ax=b, x ∈T (where, b ∈AT, and T is an arbitrary but fixed subspace of C<sup>m</sup>) and the generalized in A<sub>T,S</sub> For the special case when b ∈AT and dim(T)=dim(AT), this splitting iterative methverse A<sub>T,S</sub> hod converges to A<sub>T,S</sub>b (the unique solution of the general restricted system Ax=bx ∈T).
基金supported by the National Natural Science Foundations of China (Nos. 11972241,11572212,11272227)the Natural Science Foundation of Jiangsu Province(No. BK20191454).
文摘This paper summarized the recent development on Herglotz’s generalized variational principle and its symmetries and conserved quantities for nonconservative dynamical systems.Taking Lagrangian mechanics,Hamiltonian mechanics and Birkhoffian mechanics as three research frames,we introduce Herglotz’s generalized variational principle,dynamical equations of Herglotz type,Noether symmetry and conserved quantities,and their generalization to time-delay dynamics,fractional dynamics and time-scale dynamics,and put forward some problems as suggestions for future research.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51377041)
文摘The stator flux and electromagnetic torque observation is the basis of direct torque controlled permanent magnet synchronous motor( PMSM) drive system. However,the traditional stator flux observer based on voltage model is affected by integral initial values and integral drift,that based on current model is affected by the parameters of PMSM,so a new stator flux observation method is proposed based on an improved secondorder generalized integrator( SOGI). Compared to the stator flux observation method based on the conventional SOGI,the proposed method can not only overcome the influence of integral initial values and integral drift,but also completely eliminate the DC offset's influence. Therefore,the observation accuracy of stator flux is further improved. The simulation and experimental results both show that the proposed method has a higher stator flux and electromagnetic torque observation precision.