The Chinese Tianshan belt of the southern Altaids has undergone a complicated geological evolution. Different theories have been proposed to explain its evolution and these are still hotly debated. The major subductio...The Chinese Tianshan belt of the southern Altaids has undergone a complicated geological evolution. Different theories have been proposed to explain its evolution and these are still hotly debated. The major subduction polarity and the way of accretion are the main problems. Southward, northward subduction and multiple subduction models have been proposed. This study focuses on the structural geology of two of the main faults in the region, the South Tianshan Fault and the Nikolaev Line. The dip direction in the Muzhaerte valley is southward and lineations all point towards the NW. Two shear sense motions have been observed within both of these fault zones, a sinistral one, and a dextral one, the latter with an age of 236-251 Ma. Structural analyses on the fault zones show that subduction has been northward rather than southward. The two shear sense directions indicate that the Yili block was first dragged along towards the east due to the cloclkwise rotation of the Tarim block. After the Tarim block stopped rotating, the Yili block still kept going eastward, inducing the dextral shear senses within the fault zones.展开更多
The distribution and genesis of secondary pores in Paleogene clastic reservoirs of Beidagang structural belt in the Huanghua depression have been systematically studied. We investigated sedimentary facies and carried ...The distribution and genesis of secondary pores in Paleogene clastic reservoirs of Beidagang structural belt in the Huanghua depression have been systematically studied. We investigated sedimentary facies and carried out a comprehensive analy-sis of the vast amount of data from casting thin sections, scanning electron microscope and physical data. Then we analyzed the pore types, pore evolution, distribution and genesis of secondary pores in our study area and discussed the factors controlling the distribution of secondary pores. The results show that pores in the study area are largely composed of intergranular dissolution pores and constituent dissolved pores. Three secondary pore zones were developed in the study area at depths of 2800~3400 m, 3600~4200 m and 4500~4800 m. Secondary pores have been formed mainly because carbonate cement, feldspar, clastic debris and other plastic substances were dissolved by organic acid, released during the evolution of organic matter and acid water formed by CO2. The development and distribution of secondary pores are vertically controlled by the maturity time of source rocks and hori-zontally by the distribution of acid water. As well, this distribution was affected by the sedimentary facies belt and the development of fault zones.展开更多
Objective:To investigate the effect of hepatitis C virus non-structural protein 4B(HCV NS4B) on c-Myc, P53, ras gene expression" and apoptosis in hepatic cells and study the possible role that NS4B played in the c...Objective:To investigate the effect of hepatitis C virus non-structural protein 4B(HCV NS4B) on c-Myc, P53, ras gene expression" and apoptosis in hepatic cells and study the possible role that NS4B played in the carcinogenesis of heparoma. Methods: The recombinant plasmid(PCXN2-NS4B, PCXN2-P53) and the empty, vector were transfected or co-transfected into Chang liver cells with liposome. Screening was performed with G418. Plasmid mRNA was detected by RT-PCR. The pro rein expressions of c-Myc and ras genes were analyzed by immunocytochemistry. The expressions of wild-type P53 (wtp53) gene were detected by in situ hybridization. TUNEL(flow cytometry) was used for assessing the rate of apoptosis. Results:No expression of c-Myc gene was found in PCXN2 group. The expression of c-Myc gene in NS4B group was 21.3% + 1.2%. The ex pression of ras gene in PCXN2 group was lower than that in NS4B group. Compared with PCXN2 group, the expression of P53 mRNA was not promoted or inhibited in NS4B group. But the expression of P53 mRNA in NS4B-P53 group was lower than that in P53 group. In PCXN2, NS4B, P53 and NS4B-P53 group, the rates of apoptosis were 17.02% ± 1.24%, 11.94% ± 2.24%, 25.84% ± 3.49% and 18.34% ± 1.55% respectively. Conclusion :HCV NS4B induces the expression of c-Myc and ras gene. HCV NS4B may play a role in the inhibition of cell death through P53-dependent manner. Results from this study suggested that HCV NS4B might contribute to the viral carcinogenesis.展开更多
Based on the results from seismogeological study, aeromagnetic inversion and deep seismic sounding (DSS), it is found that the M8.0 earthquakes in North China have three common deep structural characteristics, i.e., t...Based on the results from seismogeological study, aeromagnetic inversion and deep seismic sounding (DSS), it is found that the M8.0 earthquakes in North China have three common deep structural characteristics, i.e., they all took place above the ultra-crustal deep faults or on the edges of the tectonic blocks with higher intensity, and there are low-velocity, low-density and high-conductive layers deep in the epicentral regions. The origins of the earth-quakes are also discussed and the two possibilities of seismogenesis are proposed, i.e., tectonic movement and intracrustal explosion.展开更多
Wild-type potato (Solanum tuberosum L.) plants and their transformants harboring agrobacterial rolB or rolC genes under control of the patatin class I promoter were cultured in vitro. These plants were used as a sourc...Wild-type potato (Solanum tuberosum L.) plants and their transformants harboring agrobacterial rolB or rolC genes under control of the patatin class I promoter were cultured in vitro. These plants were used as a source of single-node stem cuttings. The structure of native starch in tubers formed on cuttings was determined using methods of X-ray scattering and differential scanning microcalorimetry (DSC). It was found that in starch from tubers of rolB plants the melting temperature of crystalline lamella was lower and their thickness was less than that in wild-type potato. In tubers of rolC plants starch differed from starch in wild-type plants by a higher melting temperature, reduced melting enthalpy, and a greater thickness of crystalline lamellae. The melting of starch from tubers of rolC plants proceeded as the melting of two independent crystalline structures with melting temperatures of 338.0°K and 342.8°K. Overall data show that starches of different structure can be obtained by using transgenic approach.展开更多
BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the preval...BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the prevalence of COVID-19 is significantly higher in patients with liver cancer.However,this mechanism of action has not been clarified.Gene sets for COVID-19(GSE180226)and liver cancer(GSE87630)were obtained from the Gene Expression Omnibus database.After identifying the common differentially expressed genes(DEGs)of COVID-19 and liver cancer,functional enrichment analysis,protein-protein interaction network construction and scree-ning and analysis of hub genes were performed.Subsequently,the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed.RESULTS Of 518 common DEGs were obtained by screening for functional analysis.Fifteen hub genes including aurora kinase B,cyclin B2,cell division cycle 20,cell division cycle associated 8,nucleolar and spindle associated protein 1,etc.,were further identified from DEGs using the“cytoHubba”plugin.Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation,cell cycle and other functions,and they may serve as potential molecular markers for COVID-19 and liver cancer.Finally,we selected 10 of the hub genes for in vitro expression validation in liver cancer cells.CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19.These common pathways and key genes may provide new ideas for further mechanistic studies.展开更多
[Objective]Staphylococcus arthritis became an increasingly significant health problem in intensive chicken farming in China.[Method]In this study,a bacteria strain was isolated from the broiler chicken suffering from ...[Objective]Staphylococcus arthritis became an increasingly significant health problem in intensive chicken farming in China.[Method]In this study,a bacteria strain was isolated from the broiler chicken suffering from arthritis and named as the strain Gg1.[Result]It was then identified as Staphylococcus chromogenes by the biochemical tests and phylogenetic tree analysis based on 16S rDNA sequence.Furthermore,the catalase(katA)gene was amplified by PCR using the designed primers,and the expected fragment was 1 232 bp long encoding a protein of 410 amino acids that shares the conserved motifs including catalase,heme-binding ligand and active center motif.Six phosphorylation sites(Ser95,Thr96,Ser241,Ser242,Thr281,Ser338),four conserved residues(Ser95,His216,Tyr281,Asp341)and two active sites(His56,Asn129)were demonstrated by multiple sequence alignment and homology comparisons.The homology modeling of 3D structure of katA protein was done by SWISSMODEL server based on the template retrieved from the catalase(PDB:2ISA_A)of Vibrio salmonicida.The katA protein represents a four-domain globular protein,the quality and reliability of the resulting protein structure was further verified by Ramachandran plot.[Conclusion]To our knowledge,this is the first report of S.chromogenes linked to arthritis in chicken and the bioinformatic characterization of its katA gene.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unkn...BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.展开更多
This research was designed to assess the changes in anthocyanin content in grape skins of Vitis amurensis and to explore m RNA transcriptions of 11 structural genes(PAL,CHS3, CHI1, F3H2, F30 H, F3050 H, DFR, LDOX, UF...This research was designed to assess the changes in anthocyanin content in grape skins of Vitis amurensis and to explore m RNA transcriptions of 11 structural genes(PAL,CHS3, CHI1, F3H2, F30 H, F3050 H, DFR, LDOX, UFGT,OMT and GST) related to anthocyanin biosynthesis during grape berry development, by the use of HPLC-MS/MS and real-time Q-PCR analysis. Accumulation of anthocyanins began at veraison, continued throughout the later berry development and reached a peak at maturity. Veraison is the time when the berries turn from green to purple. Expression of PAL, CHI1, and LDOX were up-regulated from 2 to4 weeks after flowering(WAF), down-regulated from6 WAF to veraison, whereas DFR was up-regulated at8 WAF, and then up-regulated from veraison to maturity.CHS3, F3050 H, UFGT, GST, and OMT were down-regulated from 2 WAF to veraison, and then up-regulated from veraison to maturity. The transcriptional expressions of the11 structural genes also showed positive correlations with the anthocyanin content from veraison to maturity. Positive correlations were also observed between OMT transcriptional level and the content of methoxyl-anthocyanins, and between F3050 H transcriptional level and the content of delphinidin anthocyanins. F3H2 and F30 H expression was up-regulated at 2 WAF. F3H2 expression was down-regulated from 4 WAF to veraison and then up-regulated again from veraison to maturity. F30 H expression was down-regulated at 4 WAF and then up-regulated again from 6 WAF to maturity. F30 H transcriptional level was correlated positively with the cyanidin anthocyanin concentration from veraison to maturity. These results indicate that the onset of anthocyanin synthesis during berry development coincides with a coordinated increase in the expression of a number of genes in the anthocyanin biosynthetic pathway.展开更多
AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE1024...AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance.展开更多
Background: Hypertension, also known as increased blood pressure, is a phenomenon in which blood flows in blood vessels and causes persistently higher-than-normal pressure on the vessel wall. The identification of nov...Background: Hypertension, also known as increased blood pressure, is a phenomenon in which blood flows in blood vessels and causes persistently higher-than-normal pressure on the vessel wall. The identification of novel prognostic and pathogenesis biomarkers plays a key role in the management of hypertension. Methods: The GSE7483 and GSE75815 datasets from the gene expression omnibus (GEO) database were used to identify the genes associated with hypertension that were differentially expressed genes (DEGs). The functional role of the DEGs was elucidated by gene body (GO) enrichment analysis. In addition, we performed an immune infiltration assay and GSEA on the DEGs of hypertensive patients and verified the expression of novel DEGs in the blood of hypertensive patients by RT-qPCR. Results: A total of 267 DEGs were identified from the GEO database. GO analysis revealed that these genes were associated mainly with biological processes such as fibroblast proliferation, cell structural organization, extracellular matrix organization, vasculature development regulation, and angiogenesis. We identified five possible biomarkers, Ecm1, Sparc, Sphk1, Thbsl, and Mecp2, which correlate with vascular development and angiogenesis characteristic of hypertension by bioinformatics, and explored the clinical expression levels of these genes by RT-qPCR, and found that Sparc, Sphk1, and Thbs1 showed significant up-regulation, in agreement with the results of the bioinformatics analysis. Conclusion: Our study suggested that Sparc, Sphk1 and Thbs1 may be potential novel biomarkers for the diagnosis, treatment and prognosis of hypertension and that they are involved in the regulation of vascular development and angiogenesis in hypertension.展开更多
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,...With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.展开更多
Background:Meta-analysis is a quantitative approach that systematically integrates results from previous research to draw conclusions.Structural equation modelling is a statistical method that integrates factor analys...Background:Meta-analysis is a quantitative approach that systematically integrates results from previous research to draw conclusions.Structural equation modelling is a statistical method that integrates factor analysis and path analysis.Meta-analytic structural equation modeling(MASEM)combines meta-analysis and structural equation modeling.It allows researchers to explain relationships among a group of variables across multiple studies.Methods:We used a simulated dataset to conduct a univariate MASEM analysis,using Comprehensive Meta Analysis 3.3,Analysis of Moment Structures 24.0 software.Results:Despite the lack of concise literature on the methodology,our study provided a practical step-by-step guide on univariate MASEM.Conclusion:Researchers can employ MASEM analysis in applicable fields based on the description,principles,and practices expressed in this study and our previous publications mentioned in this study.展开更多
Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton ...Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.展开更多
Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal m...Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.展开更多
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone t...The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.展开更多
The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using...The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment.展开更多
Côte d’Ivoire is currently experiencing strong growth in the mining sector. Identifying the formations present in our subsoil is therefore essential for mining recovery. It is in this context that we conducted s...Côte d’Ivoire is currently experiencing strong growth in the mining sector. Identifying the formations present in our subsoil is therefore essential for mining recovery. It is in this context that we conducted studies on the formations present in the locality of Guintéguéla. It is located in the northwest of Côte d’Ivoire in the bafing region. The aim of this work was to determine the petrographic and structural characteristics of the formations of the area. The methodology began with documentation and then followed petrography and structural analysis work on the macroscopic and microscopic levels. We observed six groups of rocks: granitoids, amphibolites, orthogneiss, quartzites (poor and rich in magnetites), volcano-sediments and filonian rocks. Metamorphism is of amphibolite to granulite facies. However, volcano-sediments must be associated with the green schist facies. With regard to the structural, structures and microstructures such as foliation;fractures;sigmoidal figures reveal that the studied area was affected by ductile and also brittle tectonics whose main directions are oriented along the shear corridor, so N-S to NNW-SSE.展开更多
Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using co...Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes.展开更多
基金supported by the Chinese Major State Basic Research Program (Grants Nos.2009CB825007,2007CB411307)National Natural Science Foundation of China(Grant Nos.40730314,40821002, 41230207,41390441,41190075)the Molengraaff Fund to MCS
文摘The Chinese Tianshan belt of the southern Altaids has undergone a complicated geological evolution. Different theories have been proposed to explain its evolution and these are still hotly debated. The major subduction polarity and the way of accretion are the main problems. Southward, northward subduction and multiple subduction models have been proposed. This study focuses on the structural geology of two of the main faults in the region, the South Tianshan Fault and the Nikolaev Line. The dip direction in the Muzhaerte valley is southward and lineations all point towards the NW. Two shear sense motions have been observed within both of these fault zones, a sinistral one, and a dextral one, the latter with an age of 236-251 Ma. Structural analyses on the fault zones show that subduction has been northward rather than southward. The two shear sense directions indicate that the Yili block was first dragged along towards the east due to the cloclkwise rotation of the Tarim block. After the Tarim block stopped rotating, the Yili block still kept going eastward, inducing the dextral shear senses within the fault zones.
基金Financial support for this study by the National Basic Research Program of China (973) (No.2006CB 202300) is gratefully acknowledged
文摘The distribution and genesis of secondary pores in Paleogene clastic reservoirs of Beidagang structural belt in the Huanghua depression have been systematically studied. We investigated sedimentary facies and carried out a comprehensive analy-sis of the vast amount of data from casting thin sections, scanning electron microscope and physical data. Then we analyzed the pore types, pore evolution, distribution and genesis of secondary pores in our study area and discussed the factors controlling the distribution of secondary pores. The results show that pores in the study area are largely composed of intergranular dissolution pores and constituent dissolved pores. Three secondary pore zones were developed in the study area at depths of 2800~3400 m, 3600~4200 m and 4500~4800 m. Secondary pores have been formed mainly because carbonate cement, feldspar, clastic debris and other plastic substances were dissolved by organic acid, released during the evolution of organic matter and acid water formed by CO2. The development and distribution of secondary pores are vertically controlled by the maturity time of source rocks and hori-zontally by the distribution of acid water. As well, this distribution was affected by the sedimentary facies belt and the development of fault zones.
基金Scientific Research Fund of Sichuan Provincial Education Department(20003531)
文摘Objective:To investigate the effect of hepatitis C virus non-structural protein 4B(HCV NS4B) on c-Myc, P53, ras gene expression" and apoptosis in hepatic cells and study the possible role that NS4B played in the carcinogenesis of heparoma. Methods: The recombinant plasmid(PCXN2-NS4B, PCXN2-P53) and the empty, vector were transfected or co-transfected into Chang liver cells with liposome. Screening was performed with G418. Plasmid mRNA was detected by RT-PCR. The pro rein expressions of c-Myc and ras genes were analyzed by immunocytochemistry. The expressions of wild-type P53 (wtp53) gene were detected by in situ hybridization. TUNEL(flow cytometry) was used for assessing the rate of apoptosis. Results:No expression of c-Myc gene was found in PCXN2 group. The expression of c-Myc gene in NS4B group was 21.3% + 1.2%. The ex pression of ras gene in PCXN2 group was lower than that in NS4B group. Compared with PCXN2 group, the expression of P53 mRNA was not promoted or inhibited in NS4B group. But the expression of P53 mRNA in NS4B-P53 group was lower than that in P53 group. In PCXN2, NS4B, P53 and NS4B-P53 group, the rates of apoptosis were 17.02% ± 1.24%, 11.94% ± 2.24%, 25.84% ± 3.49% and 18.34% ± 1.55% respectively. Conclusion :HCV NS4B induces the expression of c-Myc and ras gene. HCV NS4B may play a role in the inhibition of cell death through P53-dependent manner. Results from this study suggested that HCV NS4B might contribute to the viral carcinogenesis.
基金State Natural Science Foundation of China (4977230).
文摘Based on the results from seismogeological study, aeromagnetic inversion and deep seismic sounding (DSS), it is found that the M8.0 earthquakes in North China have three common deep structural characteristics, i.e., they all took place above the ultra-crustal deep faults or on the edges of the tectonic blocks with higher intensity, and there are low-velocity, low-density and high-conductive layers deep in the epicentral regions. The origins of the earth-quakes are also discussed and the two possibilities of seismogenesis are proposed, i.e., tectonic movement and intracrustal explosion.
文摘Wild-type potato (Solanum tuberosum L.) plants and their transformants harboring agrobacterial rolB or rolC genes under control of the patatin class I promoter were cultured in vitro. These plants were used as a source of single-node stem cuttings. The structure of native starch in tubers formed on cuttings was determined using methods of X-ray scattering and differential scanning microcalorimetry (DSC). It was found that in starch from tubers of rolB plants the melting temperature of crystalline lamella was lower and their thickness was less than that in wild-type potato. In tubers of rolC plants starch differed from starch in wild-type plants by a higher melting temperature, reduced melting enthalpy, and a greater thickness of crystalline lamellae. The melting of starch from tubers of rolC plants proceeded as the melting of two independent crystalline structures with melting temperatures of 338.0°K and 342.8°K. Overall data show that starches of different structure can be obtained by using transgenic approach.
文摘BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the prevalence of COVID-19 is significantly higher in patients with liver cancer.However,this mechanism of action has not been clarified.Gene sets for COVID-19(GSE180226)and liver cancer(GSE87630)were obtained from the Gene Expression Omnibus database.After identifying the common differentially expressed genes(DEGs)of COVID-19 and liver cancer,functional enrichment analysis,protein-protein interaction network construction and scree-ning and analysis of hub genes were performed.Subsequently,the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed.RESULTS Of 518 common DEGs were obtained by screening for functional analysis.Fifteen hub genes including aurora kinase B,cyclin B2,cell division cycle 20,cell division cycle associated 8,nucleolar and spindle associated protein 1,etc.,were further identified from DEGs using the“cytoHubba”plugin.Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation,cell cycle and other functions,and they may serve as potential molecular markers for COVID-19 and liver cancer.Finally,we selected 10 of the hub genes for in vitro expression validation in liver cancer cells.CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19.These common pathways and key genes may provide new ideas for further mechanistic studies.
基金Supported by the National Natural Science Foundation of China (No.31272692,No.30800847)
文摘[Objective]Staphylococcus arthritis became an increasingly significant health problem in intensive chicken farming in China.[Method]In this study,a bacteria strain was isolated from the broiler chicken suffering from arthritis and named as the strain Gg1.[Result]It was then identified as Staphylococcus chromogenes by the biochemical tests and phylogenetic tree analysis based on 16S rDNA sequence.Furthermore,the catalase(katA)gene was amplified by PCR using the designed primers,and the expected fragment was 1 232 bp long encoding a protein of 410 amino acids that shares the conserved motifs including catalase,heme-binding ligand and active center motif.Six phosphorylation sites(Ser95,Thr96,Ser241,Ser242,Thr281,Ser338),four conserved residues(Ser95,His216,Tyr281,Asp341)and two active sites(His56,Asn129)were demonstrated by multiple sequence alignment and homology comparisons.The homology modeling of 3D structure of katA protein was done by SWISSMODEL server based on the template retrieved from the catalase(PDB:2ISA_A)of Vibrio salmonicida.The katA protein represents a four-domain globular protein,the quality and reliability of the resulting protein structure was further verified by Ramachandran plot.[Conclusion]To our knowledge,this is the first report of S.chromogenes linked to arthritis in chicken and the bioinformatic characterization of its katA gene.
基金Supported by National Natural Science Foundation of China,No.82100594.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.
基金supported by China Agriculture Research System(CARS-30)Jilin Agricultural Science and Technology College seed fund project(2013-903)
文摘This research was designed to assess the changes in anthocyanin content in grape skins of Vitis amurensis and to explore m RNA transcriptions of 11 structural genes(PAL,CHS3, CHI1, F3H2, F30 H, F3050 H, DFR, LDOX, UFGT,OMT and GST) related to anthocyanin biosynthesis during grape berry development, by the use of HPLC-MS/MS and real-time Q-PCR analysis. Accumulation of anthocyanins began at veraison, continued throughout the later berry development and reached a peak at maturity. Veraison is the time when the berries turn from green to purple. Expression of PAL, CHI1, and LDOX were up-regulated from 2 to4 weeks after flowering(WAF), down-regulated from6 WAF to veraison, whereas DFR was up-regulated at8 WAF, and then up-regulated from veraison to maturity.CHS3, F3050 H, UFGT, GST, and OMT were down-regulated from 2 WAF to veraison, and then up-regulated from veraison to maturity. The transcriptional expressions of the11 structural genes also showed positive correlations with the anthocyanin content from veraison to maturity. Positive correlations were also observed between OMT transcriptional level and the content of methoxyl-anthocyanins, and between F3050 H transcriptional level and the content of delphinidin anthocyanins. F3H2 and F30 H expression was up-regulated at 2 WAF. F3H2 expression was down-regulated from 4 WAF to veraison and then up-regulated again from veraison to maturity. F30 H expression was down-regulated at 4 WAF and then up-regulated again from 6 WAF to maturity. F30 H transcriptional level was correlated positively with the cyanidin anthocyanin concentration from veraison to maturity. These results indicate that the onset of anthocyanin synthesis during berry development coincides with a coordinated increase in the expression of a number of genes in the anthocyanin biosynthetic pathway.
基金Supported by Scientific Research Project of Xianning Central Hospital in 2022 (No.2022XYB020)Science and Technology Plan Project of Xianning Municipal in 2022 (No.2022SFYF014).
文摘AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance.
文摘Background: Hypertension, also known as increased blood pressure, is a phenomenon in which blood flows in blood vessels and causes persistently higher-than-normal pressure on the vessel wall. The identification of novel prognostic and pathogenesis biomarkers plays a key role in the management of hypertension. Methods: The GSE7483 and GSE75815 datasets from the gene expression omnibus (GEO) database were used to identify the genes associated with hypertension that were differentially expressed genes (DEGs). The functional role of the DEGs was elucidated by gene body (GO) enrichment analysis. In addition, we performed an immune infiltration assay and GSEA on the DEGs of hypertensive patients and verified the expression of novel DEGs in the blood of hypertensive patients by RT-qPCR. Results: A total of 267 DEGs were identified from the GEO database. GO analysis revealed that these genes were associated mainly with biological processes such as fibroblast proliferation, cell structural organization, extracellular matrix organization, vasculature development regulation, and angiogenesis. We identified five possible biomarkers, Ecm1, Sparc, Sphk1, Thbsl, and Mecp2, which correlate with vascular development and angiogenesis characteristic of hypertension by bioinformatics, and explored the clinical expression levels of these genes by RT-qPCR, and found that Sparc, Sphk1, and Thbs1 showed significant up-regulation, in agreement with the results of the bioinformatics analysis. Conclusion: Our study suggested that Sparc, Sphk1 and Thbs1 may be potential novel biomarkers for the diagnosis, treatment and prognosis of hypertension and that they are involved in the regulation of vascular development and angiogenesis in hypertension.
基金Supported by the Key Project of National Natural Science Foundation of China(42330810).
文摘With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.
文摘Background:Meta-analysis is a quantitative approach that systematically integrates results from previous research to draw conclusions.Structural equation modelling is a statistical method that integrates factor analysis and path analysis.Meta-analytic structural equation modeling(MASEM)combines meta-analysis and structural equation modeling.It allows researchers to explain relationships among a group of variables across multiple studies.Methods:We used a simulated dataset to conduct a univariate MASEM analysis,using Comprehensive Meta Analysis 3.3,Analysis of Moment Structures 24.0 software.Results:Despite the lack of concise literature on the methodology,our study provided a practical step-by-step guide on univariate MASEM.Conclusion:Researchers can employ MASEM analysis in applicable fields based on the description,principles,and practices expressed in this study and our previous publications mentioned in this study.
基金supported by the Jiangsu Natural Science Foundation,China(BK20231468)the Fundamental Research Funds for the Central Universities,China(ZJ24195012)+3 种基金the National Natural Science Foundation in China(31871668)the Jiangsu Key R&D Program,China(BE2022384)the Xinjiang Uygur Autonomous Region Science and Technology Support Program,China(2021E02003)the Jiangsu Collaborative Innovation Center for Modern Crop Production Project,China(No.10)。
文摘Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.
基金support from the National Natural Science Foundation of China(No.62174152)。
文摘Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
基金financially supported by the Director Fund of National Energy Deepwater Oil and Gas Engineering Technology Research and Development Center(Grant No.KJQZ-2024-2103)。
文摘The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.
文摘The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment.
文摘Côte d’Ivoire is currently experiencing strong growth in the mining sector. Identifying the formations present in our subsoil is therefore essential for mining recovery. It is in this context that we conducted studies on the formations present in the locality of Guintéguéla. It is located in the northwest of Côte d’Ivoire in the bafing region. The aim of this work was to determine the petrographic and structural characteristics of the formations of the area. The methodology began with documentation and then followed petrography and structural analysis work on the macroscopic and microscopic levels. We observed six groups of rocks: granitoids, amphibolites, orthogneiss, quartzites (poor and rich in magnetites), volcano-sediments and filonian rocks. Metamorphism is of amphibolite to granulite facies. However, volcano-sediments must be associated with the green schist facies. With regard to the structural, structures and microstructures such as foliation;fractures;sigmoidal figures reveal that the studied area was affected by ductile and also brittle tectonics whose main directions are oriented along the shear corridor, so N-S to NNW-SSE.
文摘Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes.