Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves...Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics.展开更多
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne...Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.展开更多
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati...One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.展开更多
This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic ...This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms.展开更多
Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key de...Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods.展开更多
Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring securit...Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.展开更多
Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,...Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology.展开更多
Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known bef...Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known before using heuristic search algorithms to compute the shear wave velocity profile or the number of soil layers is considered as an optimization variable.However,an improper selection of the number of layers may lead to an incorrect shear wave velocity profile.In this study,a deep learning and genetic algorithm hybrid learning procedure is proposed to perform the surface wave inversion without the need to assume the number of soil layers.First,a deep neural network is adapted to learn from a large number of synthetic dispersion curves for inferring the layer number.Then,the shear-wave velocity profile is determined by a genetic algorithm with the known layer number.By applying this procedure to both simulated and real-world cases,the results indicate that the proposed method is reliable and efficient for surface wave inversion.展开更多
Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall er...Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster.展开更多
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s...When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.展开更多
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes...Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.展开更多
The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is h...The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances.展开更多
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t...Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.展开更多
The consistency of the cell has a significant impact on battery capacity,endurance,overall performance,safety,and service life extension.However,it is challenging to identify cells with high consistency and no loss of...The consistency of the cell has a significant impact on battery capacity,endurance,overall performance,safety,and service life extension.However,it is challenging to identify cells with high consistency and no loss of battery energy.This paper presents a cell screening algorithm that integrates genetic and numerical differentiation techniques.Initially,a mathematical model for battery consistency is established,and a multi-step charging strategy is proposed to satisfy the demands of fast charging technology.Subsequently,the genetic algorithm simulates biological evolution to efficiently search for superior cell combinations within a short time while evaluating capacity,voltage consistency,and charge/discharge efficiency.Finally,through experimental validation and comparative analysis with similar algorithms,our proposed method demonstrates notable advantages in terms of both search efficiency and performance.展开更多
Ce rebral palsy is a diagnostic term utilized to describe a group of permanent disorders affecting movement and posture.Patients with cerebral palsy are often only capable of limited activity,resulting from non-progre...Ce rebral palsy is a diagnostic term utilized to describe a group of permanent disorders affecting movement and posture.Patients with cerebral palsy are often only capable of limited activity,resulting from non-progressive disturbances in the fetal or neonatal brain.These disturbances severely impact the child’s daily life and impose a substantial economic burden on the family.Although cerebral palsy encompasses various brain injuries leading to similar clinical outcomes,the unde rstanding of its etiological pathways remains incomplete owing to its complexity and heterogeneity.This review aims to summarize the current knowledge on the genetic factors influencing cerebral palsy development.It is now widely acknowledged that genetic mutations and alterations play a pivotal role in cerebral palsy development,which can be further influenced by environmental fa ctors.Des pite continuous research endeavors,the underlying fa ctors contributing to cerebral palsy remain are still elusive.However,significant progress has been made in genetic research that has markedly enhanced our comprehension of the genetic factors underlying cerebral palsy development.Moreove r,these genetic factors have been categorized based on the identified gene mutations in patients through clinical genotyping,including thrombosis,angiogenesis,mitochondrial and oxidative phosphorylation function,neuronal migration,and cellular autophagy.Furthermore,exploring targeted genotypes holds potential for precision treatment.In conclusion,advancements in genetic research have substantially improved our understanding of the genetic causes underlying cerebral palsy.These breakthroughs have the potential to pave the way for new treatments and therapies,consequently shaping the future of cerebral palsy research and its clinical management.The investigation of cerebral palsy genetics holds the potential to significantly advance treatments and management strategies.By elucidating the underlying cellular mechanisms,we can develop to rgeted interventions to optimize outcomes.A continued collaboration between researchers and clinicians is imperative to comprehensively unravel the intricate genetic etiology of cerebral palsy.展开更多
Liver cancer,primarily hepatocellular carcinoma,remains a global health challenge with rising incidence and limited therapeutic options.Genetic factors play a pivotal role in the development and progression of liver c...Liver cancer,primarily hepatocellular carcinoma,remains a global health challenge with rising incidence and limited therapeutic options.Genetic factors play a pivotal role in the development and progression of liver cancer.This state-of-the-art paper provides a comprehensive review of the current landscape of genetic screening strategies for liver cancer.We discuss the genetic underpinnings of liver cancer,emphasizing the critical role of risk-associated genetic variants,somatic mutations,and epigenetic alterations.We also explore the intricate interplay between environmental factors and genetics,highlighting how genetic screening can aid in risk stratification and early detection via using liquid biopsy,and advancements in high-throughput sequencing technologies.By synthesizing the latest research findings,we aim to provide a comprehensive overview of the state-of-the-art genetic screening methods for liver cancer,shedding light on their potential to revolutionize early detection,risk assessment,and targeted therapies in the fight against this devastating disease.展开更多
The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statist...The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly.展开更多
Core 1 synthase glycoprotein-N-acetylgalactosamine 3-β-galactosyltransferase 1(C1GALT1)is known to play a critical role in the development of gastric cancer,but few studies have elucidated associations between geneti...Core 1 synthase glycoprotein-N-acetylgalactosamine 3-β-galactosyltransferase 1(C1GALT1)is known to play a critical role in the development of gastric cancer,but few studies have elucidated associations between genetic variants in C1GALT1 and gastric cancer risk.By using the genome-wide association study data from the database of Genotype and Phenotype(dbGAP),we evaluated such associations with a multivariable logistic regression model and identified that the rs35999583 G>C in C1GALT1 was associated with gastric cancer risk(odds ratio,0.83;95% confidence interval[CI],0.75-0.92;P=3.95×10^(-4)).C1GALT1 mRNA expression levels were significantly higher in gastric tumor tissues than in normal tissues,and gastric cancer patients with higher C1GALT1 mRNA levels had worse overall survival rates(hazards ratio,1.33;95%CI,1.05-1.68;P_(log-rank)=1.90×10^(-2)).Furthermore,we found that C1GALT1 copy number differed in various immune cells and that C1GALT1 mRNA expression levels were positively correlated with the infiltrating levels of CD4^(+)T cells and macrophages.These results suggest that genetic variants of C1GALT1 may play an important role in gastric cancer risk and provide a new insight for C1GALT1 into a promising predictor of gastric cancer susceptibility and immune status.展开更多
Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and e...Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.展开更多
Endangered species generally have small populations with low genetic diversity and a high genetic load.Thuja sutchuenensis is an endangered conifer endemic to southwestern China.It was once considered extinct in the w...Endangered species generally have small populations with low genetic diversity and a high genetic load.Thuja sutchuenensis is an endangered conifer endemic to southwestern China.It was once considered extinct in the wild,but in 1999 was rediscovered.However,little is known about its genetic load.We collected 67 individuals from five wild,isolated T.sutchuenensis populations,and used 636,151 SNPs to analyze the level of genetic diversity and genetic load in T.sutchuenensis to delineate the conservation units of T.sutchuenensis,based on whole transcriptome sequencing data,as well as target capture sequencing data.We found that populations of T.sutchuenensis could be divided into three groups.These groups had low levels genetic diversity and were moderately genetically differentiated.Our findings also indicate that T.sutchuenensis suffered two severe bottlenecks around the Last Glaciation Period and Last Glacial Maximum.Among Thuja species,T.sutchuenensis presented the lowest genetic load and hence might have purged deleterious mutations efficiently through purifying selection.However,distribution of fitness effects analysis indicated a high extinction risk for T.sutchuenensis.Multiple lines of evidence identified three management units for T.sutchuenensis.Although T.sutchuenensis possesses a low genetic load,low genetic diversity,suboptimal fitness,and anthropogenic pressures all present an extinction risk for this rare conifer.This might also hold true for many endangered plant species in the mountains all over the world.展开更多
基金support from the National Science Foundation of China(Grant Nos.62075078 and 62135004)the Knowledge Innovation Program of Wuhan-Shuguang Project(Grant No.2022010801020095).
文摘Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics.
文摘Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.
文摘One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(No.RS-2023-00218176)the Soonchunhyang University Research Fund.
文摘This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms.
基金supported by the Hunan Provincial Natrual Science Foundation of China(2022JJ30103)“the 14th Five-Year”Key Disciplines and Application Oriented Special Disciplines of Hunan Province(Xiangjiaotong[2022],351)the Science and Technology Innovation Program of Hunan Province(2016TP1020).
文摘Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods.
文摘Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.
基金supported by the National Natural Science Foundation of China (No.42172343)。
文摘Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology.
基金provided through research grant No.0035/2019/A1 from the Science and Technology Development Fund,Macao SARthe assistantship from the Faculty of Science and Technology,University of Macao。
文摘Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known before using heuristic search algorithms to compute the shear wave velocity profile or the number of soil layers is considered as an optimization variable.However,an improper selection of the number of layers may lead to an incorrect shear wave velocity profile.In this study,a deep learning and genetic algorithm hybrid learning procedure is proposed to perform the surface wave inversion without the need to assume the number of soil layers.First,a deep neural network is adapted to learn from a large number of synthetic dispersion curves for inferring the layer number.Then,the shear-wave velocity profile is determined by a genetic algorithm with the known layer number.By applying this procedure to both simulated and real-world cases,the results indicate that the proposed method is reliable and efficient for surface wave inversion.
基金funded by Shanghai Natural Science Foundation(No.12ZR1414700)。
文摘Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster.
文摘When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23030).
文摘Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.
基金the Deanship of Scientific Research,Imam Mohammad Ibn Saud Islamic University(IMSIU),Saudi Arabia,for funding this research work through Grant No.(221412020).
文摘The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances.
基金Research Supporting Project Number(RSPD2023R 585),King Saud University,Riyadh,Saudi Arabia.
文摘Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.
文摘The consistency of the cell has a significant impact on battery capacity,endurance,overall performance,safety,and service life extension.However,it is challenging to identify cells with high consistency and no loss of battery energy.This paper presents a cell screening algorithm that integrates genetic and numerical differentiation techniques.Initially,a mathematical model for battery consistency is established,and a multi-step charging strategy is proposed to satisfy the demands of fast charging technology.Subsequently,the genetic algorithm simulates biological evolution to efficiently search for superior cell combinations within a short time while evaluating capacity,voltage consistency,and charge/discharge efficiency.Finally,through experimental validation and comparative analysis with similar algorithms,our proposed method demonstrates notable advantages in terms of both search efficiency and performance.
基金supported by the National Natural Science Foundation of China,No.U21A20347(to CZ)the National Key Research and Development Program of China,No.2022YFC2704801(to CZ)+1 种基金the Henan Key Laboratory of Population Defects Prevention,No.ZD202103(to YX)the Department of Science and Technology of Henan Province of China,No.212102310221(to YX)。
文摘Ce rebral palsy is a diagnostic term utilized to describe a group of permanent disorders affecting movement and posture.Patients with cerebral palsy are often only capable of limited activity,resulting from non-progressive disturbances in the fetal or neonatal brain.These disturbances severely impact the child’s daily life and impose a substantial economic burden on the family.Although cerebral palsy encompasses various brain injuries leading to similar clinical outcomes,the unde rstanding of its etiological pathways remains incomplete owing to its complexity and heterogeneity.This review aims to summarize the current knowledge on the genetic factors influencing cerebral palsy development.It is now widely acknowledged that genetic mutations and alterations play a pivotal role in cerebral palsy development,which can be further influenced by environmental fa ctors.Des pite continuous research endeavors,the underlying fa ctors contributing to cerebral palsy remain are still elusive.However,significant progress has been made in genetic research that has markedly enhanced our comprehension of the genetic factors underlying cerebral palsy development.Moreove r,these genetic factors have been categorized based on the identified gene mutations in patients through clinical genotyping,including thrombosis,angiogenesis,mitochondrial and oxidative phosphorylation function,neuronal migration,and cellular autophagy.Furthermore,exploring targeted genotypes holds potential for precision treatment.In conclusion,advancements in genetic research have substantially improved our understanding of the genetic causes underlying cerebral palsy.These breakthroughs have the potential to pave the way for new treatments and therapies,consequently shaping the future of cerebral palsy research and its clinical management.The investigation of cerebral palsy genetics holds the potential to significantly advance treatments and management strategies.By elucidating the underlying cellular mechanisms,we can develop to rgeted interventions to optimize outcomes.A continued collaboration between researchers and clinicians is imperative to comprehensively unravel the intricate genetic etiology of cerebral palsy.
基金European Union-Next Generation EU,Through the National Recovery and Resilience Plan of the Republic of Bulgaria Project,No.BG-RRP-2.004-0008.
文摘Liver cancer,primarily hepatocellular carcinoma,remains a global health challenge with rising incidence and limited therapeutic options.Genetic factors play a pivotal role in the development and progression of liver cancer.This state-of-the-art paper provides a comprehensive review of the current landscape of genetic screening strategies for liver cancer.We discuss the genetic underpinnings of liver cancer,emphasizing the critical role of risk-associated genetic variants,somatic mutations,and epigenetic alterations.We also explore the intricate interplay between environmental factors and genetics,highlighting how genetic screening can aid in risk stratification and early detection via using liquid biopsy,and advancements in high-throughput sequencing technologies.By synthesizing the latest research findings,we aim to provide a comprehensive overview of the state-of-the-art genetic screening methods for liver cancer,shedding light on their potential to revolutionize early detection,risk assessment,and targeted therapies in the fight against this devastating disease.
基金This research was financially supported by the Natural Science Basic Research Program of Shaanxi,China(2022JM-126)the National Natural Science Foundation of China(52079132).
文摘The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly.
基金funded by the National Key R&D Program of China(Grant Nos.2018YFC1313100 and 2018YFC1313102)the National Natural Science Foundation of China(Grant No.81773539)+1 种基金Collaborative Innovation Center for Cancer Personalized Medicinethe Priority Academic Program Development of Jiangsu Higher Education Institutions(Public Health and Preventive Medicine).
文摘Core 1 synthase glycoprotein-N-acetylgalactosamine 3-β-galactosyltransferase 1(C1GALT1)is known to play a critical role in the development of gastric cancer,but few studies have elucidated associations between genetic variants in C1GALT1 and gastric cancer risk.By using the genome-wide association study data from the database of Genotype and Phenotype(dbGAP),we evaluated such associations with a multivariable logistic regression model and identified that the rs35999583 G>C in C1GALT1 was associated with gastric cancer risk(odds ratio,0.83;95% confidence interval[CI],0.75-0.92;P=3.95×10^(-4)).C1GALT1 mRNA expression levels were significantly higher in gastric tumor tissues than in normal tissues,and gastric cancer patients with higher C1GALT1 mRNA levels had worse overall survival rates(hazards ratio,1.33;95%CI,1.05-1.68;P_(log-rank)=1.90×10^(-2)).Furthermore,we found that C1GALT1 copy number differed in various immune cells and that C1GALT1 mRNA expression levels were positively correlated with the infiltrating levels of CD4^(+)T cells and macrophages.These results suggest that genetic variants of C1GALT1 may play an important role in gastric cancer risk and provide a new insight for C1GALT1 into a promising predictor of gastric cancer susceptibility and immune status.
基金supported by the National Key Research and Development Program of China (2021YFA0805902,2022YFF0710703)National Natural Science Foundation of China (32201257)+1 种基金Science and Technology Innovation Project of Xiongan New Area (2022XAGG0121)Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2019QNRC001)。
文摘Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.
基金This study was financially supported by National Natural Science Foundation of China(grant No.U20A2080,31622015)the Institutional Research Fund from Sichuan University(2021SCUNL102)Fundamental Research Fund for the Central Universities of China(SCU 2021D006,SCU 2022D003).
文摘Endangered species generally have small populations with low genetic diversity and a high genetic load.Thuja sutchuenensis is an endangered conifer endemic to southwestern China.It was once considered extinct in the wild,but in 1999 was rediscovered.However,little is known about its genetic load.We collected 67 individuals from five wild,isolated T.sutchuenensis populations,and used 636,151 SNPs to analyze the level of genetic diversity and genetic load in T.sutchuenensis to delineate the conservation units of T.sutchuenensis,based on whole transcriptome sequencing data,as well as target capture sequencing data.We found that populations of T.sutchuenensis could be divided into three groups.These groups had low levels genetic diversity and were moderately genetically differentiated.Our findings also indicate that T.sutchuenensis suffered two severe bottlenecks around the Last Glaciation Period and Last Glacial Maximum.Among Thuja species,T.sutchuenensis presented the lowest genetic load and hence might have purged deleterious mutations efficiently through purifying selection.However,distribution of fitness effects analysis indicated a high extinction risk for T.sutchuenensis.Multiple lines of evidence identified three management units for T.sutchuenensis.Although T.sutchuenensis possesses a low genetic load,low genetic diversity,suboptimal fitness,and anthropogenic pressures all present an extinction risk for this rare conifer.This might also hold true for many endangered plant species in the mountains all over the world.