期刊文献+
共找到55,239篇文章
< 1 2 250 >
每页显示 20 50 100
SFGA-CPA: A Novel Screening Correlation Power Analysis Framework Based on Genetic Algorithm
1
作者 Jiahui Liu Lang Li +1 位作者 Di Li Yu Ou 《Computers, Materials & Continua》 SCIE EI 2024年第6期4641-4657,共17页
Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key de... Correlation power analysis(CPA)combined with genetic algorithms(GA)now achieves greater attack efficiency and can recover all subkeys simultaneously.However,two issues in GA-based CPA still need to be addressed:key degeneration and slow evolution within populations.These challenges significantly hinder key recovery efforts.This paper proposes a screening correlation power analysis framework combined with a genetic algorithm,named SFGA-CPA,to address these issues.SFGA-CPA introduces three operations designed to exploit CPA characteris-tics:propagative operation,constrained crossover,and constrained mutation.Firstly,the propagative operation accelerates population evolution by maximizing the number of correct bytes in each individual.Secondly,the constrained crossover and mutation operations effectively address key degeneration by preventing the compromise of correct bytes.Finally,an intelligent search method is proposed to identify optimal parameters,further improving attack efficiency.Experiments were conducted on both simulated environments and real power traces collected from the SAKURA-G platform.In the case of simulation,SFGA-CPA reduces the number of traces by 27.3%and 60%compared to CPA based on multiple screening methods(MS-CPA)and CPA based on simple GA method(SGA-CPA)when the success rate reaches 90%.Moreover,real experimental results on the SAKURA-G platform demonstrate that our approach outperforms other methods. 展开更多
关键词 Side-channel analysis correlation power analysis genetic algorithm CROSSOVER MUTATION
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
2
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
MOALG: A Metaheuristic Hybrid of Multi-Objective Ant Lion Optimizer and Genetic Algorithm for Solving Design Problems
3
作者 Rashmi Sharma Ashok Pal +4 位作者 Nitin Mittal Lalit Kumar Sreypov Van Yunyoung Nam Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2024年第3期3489-3510,共22页
This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic ... This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms. 展开更多
关键词 Multi-objective optimization genetic algorithm ant lion optimizer METAHEURISTIC
下载PDF
New Antenna Array Beamforming Techniques Based on Hybrid Convolution/Genetic Algorithm for 5G and Beyond Communications
4
作者 Shimaa M.Amer Ashraf A.M.Khalaf +3 位作者 Amr H.Hussein Salman A.Alqahtani Mostafa H.Dahshan Hossam M.Kassem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2749-2767,共19页
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t... Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL. 展开更多
关键词 Array synthesis convolution process genetic algorithm(ga) half power beamwidth(HPBW) linear antenna array(LAA) side lobe level(SLL) quality of service(QOS)
下载PDF
Surface wave inversion with unknown number of soil layers based on a hybrid learning procedure of deep learning and genetic algorithm
5
作者 Zan Zhou Thomas Man-Hoi Lok Wan-Huan Zhou 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期345-358,共14页
Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known bef... Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known before using heuristic search algorithms to compute the shear wave velocity profile or the number of soil layers is considered as an optimization variable.However,an improper selection of the number of layers may lead to an incorrect shear wave velocity profile.In this study,a deep learning and genetic algorithm hybrid learning procedure is proposed to perform the surface wave inversion without the need to assume the number of soil layers.First,a deep neural network is adapted to learn from a large number of synthetic dispersion curves for inferring the layer number.Then,the shear-wave velocity profile is determined by a genetic algorithm with the known layer number.By applying this procedure to both simulated and real-world cases,the results indicate that the proposed method is reliable and efficient for surface wave inversion. 展开更多
关键词 surface wave inversion analysis shear-wave velocity profile deep neural network genetic algorithm
下载PDF
Appropriate Combination of Crossover Operator and Mutation Operator in Genetic Algorithms for the Travelling Salesman Problem
6
作者 Zakir Hussain Ahmed Habibollah Haron Abdullah Al-Tameem 《Computers, Materials & Continua》 SCIE EI 2024年第5期2399-2425,共27页
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes... Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances. 展开更多
关键词 Travelling salesman problem genetic algorithms crossover operator mutation operator comprehensive sequential constructive crossover insertion mutation
下载PDF
Genetic algorithm-optimized backpropagation neural network establishes a diagnostic prediction model for diabetic nephropathy:Combined machine learning and experimental validation in mice 被引量:1
7
作者 WEI LIANG ZONGWEI ZHANG +5 位作者 KEJU YANG HONGTU HU QIANG LUO ANKANG YANG LI CHANG YUANYUAN ZENG 《BIOCELL》 SCIE 2023年第6期1253-1263,共11页
Background:Diabetic nephropathy(DN)is the most common complication of type 2 diabetes mellitus and the main cause of end-stage renal disease worldwide.Diagnostic biomarkers may allow early diagnosis and treatment of D... Background:Diabetic nephropathy(DN)is the most common complication of type 2 diabetes mellitus and the main cause of end-stage renal disease worldwide.Diagnostic biomarkers may allow early diagnosis and treatment of DN to reduce the prevalence and delay the development of DN.Kidney biopsy is the gold standard for diagnosing DN;however,its invasive character is its primary limitation.The machine learning approach provides a non-invasive and specific criterion for diagnosing DN,although traditional machine learning algorithms need to be improved to enhance diagnostic performance.Methods:We applied high-throughput RNA sequencing to obtain the genes related to DN tubular tissues and normal tubular tissues of mice.Then machine learning algorithms,random forest,LASSO logistic regression,and principal component analysis were used to identify key genes(CES1G,CYP4A14,NDUFA4,ABCC4,ACE).Then,the genetic algorithm-optimized backpropagation neural network(GA-BPNN)was used to improve the DN diagnostic model.Results:The AUC value of the GA-BPNN model in the training dataset was 0.83,and the AUC value of the model in the validation dataset was 0.81,while the AUC values of the SVM model in the training dataset and external validation dataset were 0.756 and 0.650,respectively.Thus,this GA-BPNN gave better values than the traditional SVM model.This diagnosis model may aim for personalized diagnosis and treatment of patients with DN.Immunohistochemical staining further confirmed that the tissue and cell expression of NADH dehydrogenase(ubiquinone)1 alpha subcomplex,4-like 2(NDUFA4L2)in tubular tissue in DN mice were decreased.Conclusion:The GA-BPNN model has better accuracy than the traditional SVM model and may provide an effective tool for diagnosing DN. 展开更多
关键词 Diabetic nephropathy Renal tubule Machine learning Diagnostic model genetic algorithm
下载PDF
Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
8
作者 陆静远 崔春凤 +4 位作者 欧阳滔 李金 何朝宇 唐超 钟建新 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期109-117,共9页
The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive... The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive genetic algorithm. Our calculations show that the adaptive genetic algorithm is efficient and accurate in the process of identifying structures with excellent thermoelectric performance. In multiple rounds, an average of 476 candidates(only 2.88% of all16512 candidate structures) are calculated to obtain the structures with extremely high thermoelectric conversion efficiency.The room temperature thermoelectric figure of merit(ZT) of the optimal γ-GYNR incorporating DSSs is 1.622, which is about 5.4 times higher than that of pristine γ-GYNR(length 23.693 nm and width 2.660 nm). The significant improvement of thermoelectric performance of the optimal γ-GYNR is mainly attributed to the maximum balance of inhibition of thermal conductance(proactive effect) and reduction of thermal power factor(side effect). Moreover, through exploration of the main variables affecting the genetic algorithm, it is revealed that the efficiency of the genetic algorithm can be improved by optimizing the initial population gene pool, selecting a higher individual retention rate and a lower mutation rate. The results presented in this paper validate the effectiveness of genetic algorithm in accelerating the exploration of γ-GYNRs with high thermoelectric conversion efficiency, and could provide a new development solution for carbon-based thermoelectric materials. 展开更多
关键词 adaptive genetic algorithm thermoelectric material diamond-like quantum dots gamma-graphyne nanoribbon
下载PDF
Generating of Test Data by Harmony Search Against Genetic Algorithms
9
作者 Ahmed S.Ghiduk Abdullah Alharbi 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期647-665,共19页
Many search-based algorithms have been successfully applied in sev-eral software engineering activities.Genetic algorithms(GAs)are the most used in the scientific domains by scholars to solve software testing problems.... Many search-based algorithms have been successfully applied in sev-eral software engineering activities.Genetic algorithms(GAs)are the most used in the scientific domains by scholars to solve software testing problems.They imi-tate the theory of natural selection and evolution.The harmony search algorithm(HSA)is one of the most recent search algorithms in the last years.It imitates the behavior of a musician tofind the best harmony.Scholars have estimated the simi-larities and the differences between genetic algorithms and the harmony search algorithm in diverse research domains.The test data generation process represents a critical task in software validation.Unfortunately,there is no work comparing the performance of genetic algorithms and the harmony search algorithm in the test data generation process.This paper studies the similarities and the differences between genetic algorithms and the harmony search algorithm based on the ability and speed offinding the required test data.The current research performs an empirical comparison of the HSA and the GAs,and then the significance of the results is estimated using the t-Test.The study investigates the efficiency of the harmony search algorithm and the genetic algorithms according to(1)the time performance,(2)the significance of the generated test data,and(3)the adequacy of the generated test data to satisfy a given testing criterion.The results showed that the harmony search algorithm is significantly faster than the genetic algo-rithms because the t-Test showed that the p-value of the time values is 0.026<α(αis the significance level=0.05 at 95%confidence level).In contrast,there is no significant difference between the two algorithms in generating the adequate test data because the t-Test showed that the p-value of thefitness values is 0.25>α. 展开更多
关键词 Harmony search algorithm genetic algorithms test data generation
下载PDF
Optimizing Region of Interest Selection for Effective Embedding in Video Steganography Based on Genetic Algorithms
10
作者 Nizheen A.Ali Ramadhan J.Mstafa 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1451-1469,共19页
With the widespread use of the internet,there is an increasing need to ensure the security and privacy of transmitted data.This has led to an intensified focus on the study of video steganography,which is a technique ... With the widespread use of the internet,there is an increasing need to ensure the security and privacy of transmitted data.This has led to an intensified focus on the study of video steganography,which is a technique that hides data within a video cover to avoid detection.The effectiveness of any steganography method depends on its ability to embed data without altering the original video’s quality while maintaining high efficiency.This paper proposes a new method to video steganography,which involves utilizing a Genetic Algorithm(GA)for identifying the Region of Interest(ROI)in the cover video.The ROI is the area in the video that is the most suitable for data embedding.The secret data is encrypted using the Advanced Encryption Standard(AES),which is a widely accepted encryption standard,before being embedded into the cover video,utilizing up to 10%of the cover video.This process ensures the security and confidentiality of the embedded data.The performance metrics for assessing the proposed method are the Peak Signalto-Noise Ratio(PSNR)and the encoding and decoding time.The results show that the proposed method has a high embedding capacity and efficiency,with a PSNR ranging between 64 and 75 dBs,which indicates that the embedded data is almost indistinguishable from the original video.Additionally,the method can encode and decode data quickly,making it efficient for real-time applications. 展开更多
关键词 Video steganography genetic algorithm advanced encryption standard SECURITY effective embedding
下载PDF
A Multi-Object Genetic Algorithm for the Assembly Line Balance Optimization in Garment Flexible Job Shop Scheduling
11
作者 Junru Liu Yonggui Lv 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2421-2439,共19页
Numerous clothing enterprises in the market have a relatively low efficiency of assembly line planning due to insufficient optimization of bottleneck stations.As a result,the production efficiency of the enterprise is... Numerous clothing enterprises in the market have a relatively low efficiency of assembly line planning due to insufficient optimization of bottleneck stations.As a result,the production efficiency of the enterprise is not high,and the production organization is not up to expectations.Aiming at the problem of flexible process route planning in garment workshops,a multi-object genetic algorithm is proposed to solve the assembly line bal-ance optimization problem and minimize the machine adjustment path.The encoding method adopts the object-oriented path representation method,and the initial population is generated by random topology sorting based on an in-degree selection mechanism.The multi-object genetic algorithm improves the mutation and crossover operations according to the characteristics of the clothing process to avoid the generation of invalid offspring.In the iterative process,the bottleneck station is optimized by reasonable process splitting,and process allocation conforms to the strict limit of the station on the number of machines in order to improve the compilation efficiency.The effectiveness and feasibility of the multi-object genetic algorithm are proven by the analysis of clothing cases.Compared with the artificial allocation process,the compilation efficiency of MOGA is increased by more than 15%and completes the optimization of the minimum machine adjustment path.The results are in line with the expected optimization effect. 展开更多
关键词 Assembly line balance topological order genetic algorithm compilation efficiency pre-production scheduling
下载PDF
LociScan,a tool for screening genetic marker combinations for plant variety discrimination
12
作者 Yang Yang Hongli Tian +5 位作者 Hongmei Yi Zi Shi Lu Wang Yaming Fan Fengge Wang Jiuran Zhao 《The Crop Journal》 SCIE CSCD 2024年第2期583-593,共11页
To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening m... To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening model based on the genetic algorithm(GA)and implemented in a software tool,Loci Scan.Ratio-based variety discrimination power provided the largest optimization space among multiple fitness functions.Among GA parameters,an increase in population size and generation number enlarged optimization depth but also calculation workload.Exhaustive algorithm afforded the same optimization depth as GA but vastly increased calculation time.In comparison with two other software tools,Loci Scan accommodated missing data,reduced calculation time,and offered more fitness functions.In large datasets,the sample size of training data exerted the strongest influence on calculation time,whereas the marker size of training data showed no effect,and target marker number had limited effect on analysis speed. 展开更多
关键词 Plant variety discrimination genetic marker combination Variety discrimination power genetic algorithm
下载PDF
Intelligent Design of High Strength and High Conductivity Copper Alloys Using Machine Learning Assisted by Genetic Algor
13
作者 Parth Khandelwal Harshit Indranil Manna 《Computers, Materials & Continua》 SCIE EI 2024年第4期1727-1755,共29页
Metallic alloys for a given application are usually designed to achieve the desired properties by devising experimentsbased on experience, thermodynamic and kinetic principles, and various modeling and simulation exer... Metallic alloys for a given application are usually designed to achieve the desired properties by devising experimentsbased on experience, thermodynamic and kinetic principles, and various modeling and simulation exercises.However, the influence of process parameters and material properties is often non-linear and non-colligative. Inrecent years, machine learning (ML) has emerged as a promising tool to dealwith the complex interrelation betweencomposition, properties, and process parameters to facilitate accelerated discovery and development of new alloysand functionalities. In this study, we adopt an ML-based approach, coupled with genetic algorithm (GA) principles,to design novel copper alloys for achieving seemingly contradictory targets of high strength and high electricalconductivity. Initially, we establish a correlation between the alloy composition (binary to multi-component) andthe target properties, namely, electrical conductivity and mechanical strength. Catboost, an ML model coupledwith GA, was used for this task. The accuracy of the model was above 93.5%. Next, for obtaining the optimizedcompositions the outputs fromthe initial model were refined by combining the concepts of data augmentation andPareto front. Finally, the ultimate objective of predicting the target composition that would deliver the desired rangeof properties was achieved by developing an advancedMLmodel through data segregation and data augmentation.To examine the reliability of this model, results were rigorously compared and verified using several independentdata reported in the literature. This comparison substantiates that the results predicted by our model regarding thevariation of conductivity and evolution ofmicrostructure and mechanical properties with composition are in goodagreement with the reports published in the literature. 展开更多
关键词 Machine learning genetic algorithm SOLID-SOLUTION precipitation strengthening pareto front data augmentation
下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
14
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
下载PDF
Design of S-band photoinjector with high bunch charge and low emittance based on multi-objective genetic algorithm 被引量:1
15
作者 Ze-Yi Dai Yuan-Cun Nie +9 位作者 Zi Hui Lan-Xin Liu Zi-Shuo Liu Jian-Hua Zhong Jia-Bao Guan Ji-Ke Wang Yuan Chen Ye Zou Hao-Hu Li Jian-Hua He 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第3期93-105,共13页
High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play... High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed. 展开更多
关键词 Electron linear accelerator PHOTOINJECTOR Beam dynamics Multi-objective genetic algorithm
下载PDF
Speed Regulation Method Using Genetic Algorithm for Dual Three-phase Permanent Magnet Synchronous Motors 被引量:1
16
作者 Xiuhong Jiang Yuying Wang Jiarui Dong 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第2期171-178,共8页
Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the... Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller. 展开更多
关键词 Dual three-phase permanent magnet synchronous motor genetic algorithm PI control Speed regulation
下载PDF
Ship Weather Routing Based on Hybrid Genetic Algorithm Under Complicated Sea Conditions
17
作者 ZHOU Peng ZHOU Zheng +1 位作者 WANG Yan WANG Hongbo 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期28-42,共15页
Considering the effects of increased economic globalization and global warming,developing methods for reducing shipping costs and greenhouse gas emissions in ocean transportation has become crucial.Owing to its key ro... Considering the effects of increased economic globalization and global warming,developing methods for reducing shipping costs and greenhouse gas emissions in ocean transportation has become crucial.Owing to its key role in modern navigation technology,ship weather routing is the research focus of several scholars in this field.This study presents a hybrid genetic algorithm for the design of an optimal ship route for safe transoceanic navigation under complicated sea conditions.On the basis of the basic genetic algorithm,simulated annealing algorithm is introduced to enhance its local search ability and avoid premature convergence,with the ship’s voyage time and fuel consumption as optimization goals.Then,a mathematical model of ship weather routing is developed based on the grid system.A measure of fitness calibration is proposed,which can change the selection pressure of the algorithm as the population evolves.In addition,a hybrid crossover operator is proposed to enhance the ability to find the optimal solution and accelerate the convergence speed of the algorithm.Finally,a multi-population technique is applied to improve the robustness of the algorithm using different evolutionary strategies. 展开更多
关键词 genetic algorithm simulated annealing algorithm weather routing ship speed loss
下载PDF
Neutrosophic Adaptive Clustering Optimization in Genetic Algorithm and Its Application in Cubic Assignment Problem
18
作者 Fangwei Zhang Shihe Xu +2 位作者 Bing Han Liming Zhang Jun Ye 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期2211-2226,共16页
In optimization theory,the adaptive control of the optimization process is an important goal that people pursue.To solve this problem,this study introduces the idea of neutrosophic decision-making into classical heuri... In optimization theory,the adaptive control of the optimization process is an important goal that people pursue.To solve this problem,this study introduces the idea of neutrosophic decision-making into classical heuristic algorithm,and proposes a novel neutrosophic adaptive clustering optimization thought,which is applied in a novel neutrosophic genetic algorithm(NGA),for example.The main feature of NGA is that the NGA treats the crossover effect as a neutrosophic fuzzy set,the variation ratio as a structural parameter,the crossover effect as a benefit parameter and the variation effect as a cost parameter,and then a neutrosophic fitness function value is created.Finally,a high order assignment problem in warehousemanagement is taken to illustrate the effectiveness of NGA. 展开更多
关键词 Neutrosophic fuzzy set heuristic algorithm genetic algorithm intelligent control warehouse operation
下载PDF
Dendritic Cell Algorithm with Grouping Genetic Algorithm for Input Signal Generation
19
作者 Dan Zhang Yiwen Liang Hongbin Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2025-2045,共21页
The artificial immune system,an excellent prototype for developingMachine Learning,is inspired by the function of the powerful natural immune system.As one of the prevalent classifiers,the Dendritic Cell Algorithm(DCA... The artificial immune system,an excellent prototype for developingMachine Learning,is inspired by the function of the powerful natural immune system.As one of the prevalent classifiers,the Dendritic Cell Algorithm(DCA)has been widely used to solve binary problems in the real world.The classification of DCA depends on a data preprocessing procedure to generate input signals,where feature selection and signal categorization are themain work.However,the results of these studies also show that the signal generation of DCA is relatively weak,and all of them utilized a filter strategy to remove unimportant attributes.Ignoring filtered features and applying expertise may not produce an optimal classification result.To overcome these limitations,this study models feature selection and signal categorization into feature grouping problems.This study hybridizes Grouping Genetic Algorithm(GGA)with DCA to propose a novel DCA version,GGA-DCA,for accomplishing feature selection and signal categorization in a search process.The GGA-DCA aims to search for the optimal feature grouping scheme without expertise automatically.In this study,the data coding and operators of GGA are redefined for grouping tasks.The experimental results show that the proposed algorithm has significant advantages over the compared DCA expansion algorithms in terms of signal generation. 展开更多
关键词 Dendritic cell algorithm combinatorial optimization grouping problems grouping genetic algorithm
下载PDF
A Dynamic Maintenance Strategy for Multi-Component Systems Using a Genetic Algorithm
20
作者 Dongyan Shi Hui Ma Chunlong Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1899-1923,共25页
In multi-component systems,the components are dependent,rather than degenerating independently,leading to changes inmaintenance schedules.In this situation,this study proposes a grouping dynamicmaintenance strategy.Co... In multi-component systems,the components are dependent,rather than degenerating independently,leading to changes inmaintenance schedules.In this situation,this study proposes a grouping dynamicmaintenance strategy.Considering the structure of multi-component systems,the maintenance strategy is determined according to the importance of the components.The strategy can minimize the expected depreciation cost of the system and divide the system into optimal groups that meet economic requirements.First,multi-component models are grouped.Then,a failure probability model of multi-component systems is established.The maintenance parameters in each maintenance cycle are updated according to the failure probability of the components.Second,the component importance indicator is introduced into the grouping model,and the optimization model,which aimed at a maximum economic profit,is established.A genetic algorithm is used to solve the non-deterministic polynomial(NP)-complete problem in the optimization model,and the optimal grouping is obtained through the initial grouping determined by random allocation.An 11-component series and parallel system is used to illustrate the effectiveness of the proposed strategy,and the influence of the system structure and the parameters on the maintenance strategy is discussed. 展开更多
关键词 Condition-based maintenance predictive maintenance maintenance strategy genetic algorithm NP-complete problems
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部