When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s...When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.展开更多
This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the ...This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. The dynamics of the controlled system is unknown to the GA. The only information for evaluating performance is a failure signal indicating that the controlled system is out of control. We compare its performance with that of other learning methods for the same problem. We also examine the ability of the algorithm to adapt to changing conditions. Simulation results show that such an approach for self-learning fuzzy control rules is both effective and robust.展开更多
This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globall...This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globally searching process of genetic algorithm, aiming to enhance the convergence rate and real-time learning ability of genetic algorithm, which is then used to construct fuzzy controllers for complex dynamic systems without any knowledge about system dynamics and prior control experience. The cart-pole system is employed as a test bed to demonstrate the effectiveness of the proposed control scheme, and the robustness of the acquired fuzzy controller with comparable result.展开更多
Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live l...Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live loads, compressive strength of concrete and yield strength of steel;design variables are the width and effective depth of the continuous beam and steel ratios for positive and negative moments. The constraints are built based on the ACI Building Code by considering the strength requirements of shear and the maximum positive and negative moments, the development length of flexural reinforcement, and the serviceability requirement of deflection. The objective function is to minimize the total cost of steel and concrete. The optimal data found from the genetic algorithm are divided into three groups: the training set, the checking set and the testing set for the use of the adaptive neuro-fuzzy inference system (ANFIS). The input vector of ANFIS consists of the yield strength of steel, compressive strength of concrete, dead load, span, width and effective depth of the beam;its outputs are the minimum total cost and optimal steel ratios for positive and negative moments. To make ANFIS more efficient, the technique of Subtractive Clustering is applied to group the data to help streamline the fuzzy rules. Numerical results show that the performance of ANFIS is excellent, with correlation coefficients between the three targets and outputs of the testing data being greater than 0.99.展开更多
A new method for no-reference image quality assessment based on hybrid fuzzy-genetic technique is proposed. Noise variance and edge sharpness level of the restored image are two basic metrics for assessing the perform...A new method for no-reference image quality assessment based on hybrid fuzzy-genetic technique is proposed. Noise variance and edge sharpness level of the restored image are two basic metrics for assessing the performance of the restoration algorithm, then a fuzzy if-then inference system is developed to combine the two metrics to get a final quality score, and the parameters of the fuzzy membership function are trained with genetic algorithms. Experiments results show that the image quality score correlates well with mean opinion score and the proposed approach is robust and effective.展开更多
The quantum self-organization algorithm model of wise knowledge base design for intelligent fuzzy controllers with required robust level considered.Background of the model is a new model of quantum inference based on ...The quantum self-organization algorithm model of wise knowledge base design for intelligent fuzzy controllers with required robust level considered.Background of the model is a new model of quantum inference based on quantum genetic algorithm.Quantum genetic algorithm applied on line for the quantum correlation’s type searching between unknown solutions in quantum superposition of imperfect knowledge bases of intelligent controllers designed on soft computing.Disturbance conditions of analytical information-thermodynamic trade-off interrelations between main control quality measures(as new design laws)discussed in Part I.The smart control design with guaranteed achievement of these trade-off interrelations is main goal for quantum self-organization algorithm of imperfect KB.Sophisticated synergetic quantum information effect in Part I(autonomous robot in unpredicted control situations)and II(swarm robots with imperfect KB exchanging between“master-slaves”)introduced:a new robust smart controller on line designed from responses on unpredicted control situations of any imperfect KB applying quantum hidden information extracted from quantum correlation.Within the toolkit of classical intelligent control,the achievement of the similar synergetic information effect is impossible.Benchmarks of intelligent cognitive robotic control applications considered.展开更多
The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and t...The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and the sample data that are used to establish data-driven models are always insufficient.Aiming at this problem,a combined method of genetic algorithm(GA) and adaptive neuro-fuzzy inference system(ANFIS) is proposed and applied to element yield rate prediction in ladle furnace(LF).In order to get rid of the over reliance upon data in data-driven method and act as a supplement of inadequate samples,smelting experience is integrated into prediction model as fuzzy empirical rules by using the improved ANFIS method.For facilitating the combination of fuzzy rules,feature construction method based on GA is used to reduce input dimension,and the selection operation in GA is improved to speed up the convergence rate and to avoid trapping into local optima.The experimental and practical testing results show that the proposed method is more accurate than other prediction methods.展开更多
Virtual representation and simulation of spatio-temporal phenomena is a promising goal for the production of an advanced digital earth.Spread modeling,which is one of the most helpful analyses in the geographic inform...Virtual representation and simulation of spatio-temporal phenomena is a promising goal for the production of an advanced digital earth.Spread modeling,which is one of the most helpful analyses in the geographic information system(GIS),plays a prominent role in meeting this objective.This study proposes a new model that considers both aspects of static and dynamic behaviors of spreadable spatio-temporal in cellular automata(CA)modeling.Therefore,artificial intelligence tools such as adaptive neuro-fuzzy inference system(ANFIS)and genetic algorithm(GA)were used in accordance with the objectives of knowledge discovery and optimization.Significant conditions in updating states are considered so traditional CA transition rules can be accompanied with the impact of fuzzy discovered knowledge and the solution of spread optimization.We focused on the estimation of forest fire growth as an important case study for decision makers.A two-dimensional cellular representation of the combustion of heterogeneous fuel types and density on non-flat terrain were successfully linked with dynamic wind and slope impact.The validation of the simulation on experimental data indicated a relatively realistic head-fire shape.Further investigations showed that the results obtained using the dynamic controlling with GA in the absence of static modeling with ANFIS were unacceptable.展开更多
Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an A...Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an Adaptive Neural Fuzzy Inference System (ANFIS) identification model of DMFC stack temperature is developed based on the input-output sampled data, which can avoid the internal complexity of DMFC stack. In the controlling process, with the network model trained well as the reference model of the DMFC control system, a novel fuzzy genetic algorithm is used to regulate the parameters and fuzzy rules of a neural fuzzy controller. In the simulation, compared with the nonlinear Proportional Integral Derivative (PID) and traditional fuzzy algorithm, the improved neural fuzzy controller designed in this paper gets better performance, as demonstrated by the simulation results.展开更多
文摘When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.
文摘This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. The dynamics of the controlled system is unknown to the GA. The only information for evaluating performance is a failure signal indicating that the controlled system is out of control. We compare its performance with that of other learning methods for the same problem. We also examine the ability of the algorithm to adapt to changing conditions. Simulation results show that such an approach for self-learning fuzzy control rules is both effective and robust.
文摘This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globally searching process of genetic algorithm, aiming to enhance the convergence rate and real-time learning ability of genetic algorithm, which is then used to construct fuzzy controllers for complex dynamic systems without any knowledge about system dynamics and prior control experience. The cart-pole system is employed as a test bed to demonstrate the effectiveness of the proposed control scheme, and the robustness of the acquired fuzzy controller with comparable result.
文摘Using a genetic algorithm owing to high nonlinearity of constraints, this paper first works on the optimal design of two-span continuous singly reinforced concrete beams. Given conditions are the span, dead and live loads, compressive strength of concrete and yield strength of steel;design variables are the width and effective depth of the continuous beam and steel ratios for positive and negative moments. The constraints are built based on the ACI Building Code by considering the strength requirements of shear and the maximum positive and negative moments, the development length of flexural reinforcement, and the serviceability requirement of deflection. The objective function is to minimize the total cost of steel and concrete. The optimal data found from the genetic algorithm are divided into three groups: the training set, the checking set and the testing set for the use of the adaptive neuro-fuzzy inference system (ANFIS). The input vector of ANFIS consists of the yield strength of steel, compressive strength of concrete, dead load, span, width and effective depth of the beam;its outputs are the minimum total cost and optimal steel ratios for positive and negative moments. To make ANFIS more efficient, the technique of Subtractive Clustering is applied to group the data to help streamline the fuzzy rules. Numerical results show that the performance of ANFIS is excellent, with correlation coefficients between the three targets and outputs of the testing data being greater than 0.99.
文摘A new method for no-reference image quality assessment based on hybrid fuzzy-genetic technique is proposed. Noise variance and edge sharpness level of the restored image are two basic metrics for assessing the performance of the restoration algorithm, then a fuzzy if-then inference system is developed to combine the two metrics to get a final quality score, and the parameters of the fuzzy membership function are trained with genetic algorithms. Experiments results show that the image quality score correlates well with mean opinion score and the proposed approach is robust and effective.
文摘The quantum self-organization algorithm model of wise knowledge base design for intelligent fuzzy controllers with required robust level considered.Background of the model is a new model of quantum inference based on quantum genetic algorithm.Quantum genetic algorithm applied on line for the quantum correlation’s type searching between unknown solutions in quantum superposition of imperfect knowledge bases of intelligent controllers designed on soft computing.Disturbance conditions of analytical information-thermodynamic trade-off interrelations between main control quality measures(as new design laws)discussed in Part I.The smart control design with guaranteed achievement of these trade-off interrelations is main goal for quantum self-organization algorithm of imperfect KB.Sophisticated synergetic quantum information effect in Part I(autonomous robot in unpredicted control situations)and II(swarm robots with imperfect KB exchanging between“master-slaves”)introduced:a new robust smart controller on line designed from responses on unpredicted control situations of any imperfect KB applying quantum hidden information extracted from quantum correlation.Within the toolkit of classical intelligent control,the achievement of the similar synergetic information effect is impossible.Benchmarks of intelligent cognitive robotic control applications considered.
基金Projects(2007AA041401,2007AA04Z194) supported by the National High Technology Research and Development Program of China
文摘The traditional prediction methods of element yield rate can be divided into experience method and data-driven method.But in practice,the experience formulae are found to work only under some specific conditions,and the sample data that are used to establish data-driven models are always insufficient.Aiming at this problem,a combined method of genetic algorithm(GA) and adaptive neuro-fuzzy inference system(ANFIS) is proposed and applied to element yield rate prediction in ladle furnace(LF).In order to get rid of the over reliance upon data in data-driven method and act as a supplement of inadequate samples,smelting experience is integrated into prediction model as fuzzy empirical rules by using the improved ANFIS method.For facilitating the combination of fuzzy rules,feature construction method based on GA is used to reduce input dimension,and the selection operation in GA is improved to speed up the convergence rate and to avoid trapping into local optima.The experimental and practical testing results show that the proposed method is more accurate than other prediction methods.
文摘Virtual representation and simulation of spatio-temporal phenomena is a promising goal for the production of an advanced digital earth.Spread modeling,which is one of the most helpful analyses in the geographic information system(GIS),plays a prominent role in meeting this objective.This study proposes a new model that considers both aspects of static and dynamic behaviors of spreadable spatio-temporal in cellular automata(CA)modeling.Therefore,artificial intelligence tools such as adaptive neuro-fuzzy inference system(ANFIS)and genetic algorithm(GA)were used in accordance with the objectives of knowledge discovery and optimization.Significant conditions in updating states are considered so traditional CA transition rules can be accompanied with the impact of fuzzy discovered knowledge and the solution of spread optimization.We focused on the estimation of forest fire growth as an important case study for decision makers.A two-dimensional cellular representation of the combustion of heterogeneous fuel types and density on non-flat terrain were successfully linked with dynamic wind and slope impact.The validation of the simulation on experimental data indicated a relatively realistic head-fire shape.Further investigations showed that the results obtained using the dynamic controlling with GA in the absence of static modeling with ANFIS were unacceptable.
文摘Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an Adaptive Neural Fuzzy Inference System (ANFIS) identification model of DMFC stack temperature is developed based on the input-output sampled data, which can avoid the internal complexity of DMFC stack. In the controlling process, with the network model trained well as the reference model of the DMFC control system, a novel fuzzy genetic algorithm is used to regulate the parameters and fuzzy rules of a neural fuzzy controller. In the simulation, compared with the nonlinear Proportional Integral Derivative (PID) and traditional fuzzy algorithm, the improved neural fuzzy controller designed in this paper gets better performance, as demonstrated by the simulation results.