The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature. 13enetic algorithm (GA) has been proved to be a teasibte method when the gradient ...The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature. 13enetic algorithm (GA) has been proved to be a teasibte method when the gradient is difficult to calculate. Its advantage is that the control profiles at all time stages are optimized simultaneously, but its convergence is very slow in the later period of evolution and it is easily trapped in the local optimum. In this study, a hybrid improved genetic algorithm (HIGA) for solving dynamic optimization problems is proposed to overcome these defects. Simplex method (SM) is used to perform the local search in the neighborhood of the optimal solution. By using SM, the ideal searching direction of global optimal solution could be found as soon as possible and the convergence speed of the algorithm is improved. The hybrid algorithm presents some improvements, such as protecting the best individual, accepting immigrations, as well as employing adaptive crossover and Ganssian mutation operators. The efficiency of the proposed algorithm is demonstrated by solving several dynamic optimization problems. At last, HIGA is applied to the optimal production of secreted protein in a fed batch reactor and the optimal feed-rate found by HIGA is effective and relatively stable.展开更多
For the structural-acoustic radiation optimization problem under external loading,acoustic radiation power was considered to be an objective function in the optimization method. The finite element method(FEM) and boun...For the structural-acoustic radiation optimization problem under external loading,acoustic radiation power was considered to be an objective function in the optimization method. The finite element method(FEM) and boundary element method(BEM) were adopted in numerical calculations,and structural response and the acoustic response were assumed to be de-coupled in the analysis. A genetic algorithm was used as the strategy in optimization. In order to build the relational expression of the pressure objective function and the power objective function,the enveloping surface model was used to evaluate pressure in the acoustic domain. By taking the stiffened panel structural-acoustic optimization problem as an example,the acoustic power and field pressure after optimized was compared. Optimization results prove that this method is reasonable and effective.展开更多
This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First...This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient.展开更多
This paper describes a generalization methodology for nonlinear magnetic field calculation applied on two-dimensional (2-D) finite Volume geometry by incorporating a Jiles-Atherton scalar hysteresis model. The scheme ...This paper describes a generalization methodology for nonlinear magnetic field calculation applied on two-dimensional (2-D) finite Volume geometry by incorporating a Jiles-Atherton scalar hysteresis model. The scheme is based upon the definition of modified governing equation derived from Maxwell’s equations considered the magnetization M. This paper shows how to extract optimal parameters for the Jiles-Atherton model of hysteresis by a real coded genetic algorithm approach. The parameters identification is performed by minimizing the mean squared error between experimental and simulated magnetic field curves. The calculated results are validated by experiences performed in an SST’s frame.展开更多
A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone con...A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.展开更多
To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as...To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as an object. A changing weight value method is put forward and a selection formula is modified. Some experiments were implemented on an AUV, TwinBurger. The results shows that this method is effective and feasible.展开更多
Anisotropic plates in different applications may have geometric defects such as openings and cracks.The presence of the opening disturbs the heat flow,which creates significant thermal stress around the opening.When t...Anisotropic plates in different applications may have geometric defects such as openings and cracks.The presence of the opening disturbs the heat flow,which creates significant thermal stress around the opening.When the heat flux is high enough,these extreme stresses can lead to structural failure.This article aims to obtain the optimal parameters for achieving the minimum value of the normalized stress near the cutout’s boundary in perforated anisotropic plates utilizing the genetic algorithm.Optimization parameters include the curvature of opening’s corners,orientation angle of opening,fibers angle,heat flux angle,and opening’s elongation.The plate is under heat flux,and the opening’s border is thermally insulated.The stress distribution around the opening is calculated using Lekhnitskii’s complex variable method and complex potential functions.The genetic algorithm is then implemented to find the optimal values for design parameters.The results show that by selecting the optimal parameters related to the anisotropic material and the opening’s geometry,the stress intensity factor of the perforated anisotropic plates is remarkably reduced.Furthermore,this optimization algorithm can be extended to find the optimized parameters and achieve the optimal designs in anisotropic and isotropic perforated plates under thermal loadings.展开更多
This paper delineates a conventional buck converter controlled by optimized PID controller where Genetic Algorithm (GA) is employed with a view to enhancing the performance by analyzing the performance parameters. Gen...This paper delineates a conventional buck converter controlled by optimized PID controller where Genetic Algorithm (GA) is employed with a view to enhancing the performance by analyzing the performance parameters. Genetic Algorithm is a probabilistic search algorithm which is substantially used as an optimization technique in power electronics. A bunch of modifications have already been introduced to enhance the performance depending upon the applications. However, in this paper, modified genetic algorithm has been used in order to tune the key parameters in the converter. Hence, an analysis is carried out where the performance of the converter is illustrated in terms of rise time, settling time and percentage of overshoot by deploying GA based PID controller and the overall comparative study is presented. Responses of the overall system are accumulated through rigorous simulation in MATLAB environment.展开更多
The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To ge...The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To get solutions in determining routes which are realistic and very close to the actual solution, we use heuristics and metaheuristics which are of the combinatorial optimization type. A literature review of VRPTW, TDVRP, and a metaheuristic such as the genetic algorithm was conducted. In this paper, the implementation of the VRPTW and its extension, the time-dependent VRPTW (TDVRPTW) has been carried out using the model as well as metaheuristics such as the genetic algorithm (GA). The algorithms were implemented, using Matlab and HeuristicLab optimization software. A plugin was developed using Visual C# and DOT NET framework 4.5. Results were tested using Solomon’s 56 benchmark instances classified into groups such as C1, C2, R1, R2, RC1, RC2, with 100 customer nodes, 25 vehicles and each vehicle capacity of 200. The results were comparable to the earlier algorithms developed and in some cases the current algorithm yielded better results in terms of total distance travelled and the average number of vehicles used.展开更多
As an important process during the cement production,grate cooler plays significance roles on clinker cooling and waste heat recovery.In this paper,we measured experimentally the heat balance of the grate cooler,which...As an important process during the cement production,grate cooler plays significance roles on clinker cooling and waste heat recovery.In this paper,we measured experimentally the heat balance of the grate cooler,which provided initial operating parameters for optimization.Then,the grate cooler was simplified into a series-connected heat exchanger network by power flow method.Constructing the equivalent thermal resistance network provided the global constraints by Kirchhoff’s law.On this basis,with the objectives of the minimum entropy generation numbers caused by heat transfer and viscous dissipation,solving a multi-objective optimization model achieved the Pareto Front by genetic algorithm.Then selecting the scheme of the lowest fan power consumption obtained the optimal operating parameters of the grate cooler.The results showed that the total mass flow of the optimized scheme did not change significantly compared with the original scheme,but the fan power consumption was 25.44%lower,and the heat recovery efficiency was 88.43%,which was improved by 11.35%.Furthermore,the analysis showed that the optimal operating parameters were affected by the local heat load.After optimizing the diameter of clinker particles within the allowable industrial range,the clinker with particle diameter of 0.02 m had the optimal performance.展开更多
An optimization method to design turbine airfoils using a Genetic Algorithm (GA) design shell coupled directly with a viscous CFD (Computational Fluid Dynamics) analysis code is proposed in this paper. The blade geome...An optimization method to design turbine airfoils using a Genetic Algorithm (GA) design shell coupled directly with a viscous CFD (Computational Fluid Dynamics) analysis code is proposed in this paper. The blade geometry is parameterized and the optimization method is used to search for a blade geometry that will minimize the loss in the turbine cascade passage. The viscous flow prediction code is verified by the experimental data of cascade, which is typical for a gas turbine rotor blade section. A comparative study of the blades designed by the optimization technique and the original one is presented[展开更多
A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of componen...A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions.展开更多
It is difficult to determine the main controlling factors of tight oil production.In addition to the problem of uncontrollable prediction accuracy,the numerical prediction model established by the main controlling fac...It is difficult to determine the main controlling factors of tight oil production.In addition to the problem of uncontrollable prediction accuracy,the numerical prediction model established by the main controlling factors will also make the correctly predicted low production samples lose the value of development.Applying the optimization algorithm with fast convergence speed and global optimization to optimize the controllable parameters in the high-precision numerical prediction model can effectively improve the productivity of low production wells with timeliness,and bring greater economic value while saving development cost.Using PCA-GRA method,the sample weight and the weighted correlation ranking results of parameters affecting tight oil production were obtained.Thereupon then the main controlling factors of tight oil production were determined.Then we set up a BP neural network model with by taking the main controlling factors as input and tight oil production as output.The prediction effect of the network was good and can be put into use.The results of sensitivity analysis showed that the network was stable,and the total fracturing fluid volume had the greatest impact on the production of tight oil.Finally,by using genetic algorithm,we optimized the fracturing parameters of all low production well samples in the field data.Combined with the fracturing parameters of all high production well samples and the optimized fracturing parameters of low production wells,the optimal interval of fracturing parameters was given,which can provide guidance for the field fracturing operation.展开更多
In this paper a hybrid algorithm which combines the pattern search method and the genetic algorithm for unconstrained optimization is presented. The algorithm is a deterministic pattern search algorithm,but in the sea...In this paper a hybrid algorithm which combines the pattern search method and the genetic algorithm for unconstrained optimization is presented. The algorithm is a deterministic pattern search algorithm,but in the search step of pattern search algorithm,the trial points are produced by a way like the genetic algorithm. At each iterate, by reduplication,crossover and mutation, a finite set of points can be used. In theory,the algorithm is globally convergent. The most stir is the numerical results showing that it can find the global minimizer for some problems ,which other pattern search algorithms don't bear.展开更多
The research study proposes to examine a three-dimensional visualization program, emphasizing on improving genetic algorithms through the optimization of a layout design-based standard and discrete shipbuilding worksh...The research study proposes to examine a three-dimensional visualization program, emphasizing on improving genetic algorithms through the optimization of a layout design-based standard and discrete shipbuilding workshop. By utilizing a steel processing workshop as an example, the principle of minimum logistic costs will be implemented to obtain an ideological equipment layout, and a mathematical model. The objectiveness is to minimize the total necessary distance traveled between machines. An improved control operator is implemented to improve the iterative efficiency of the genetic algorithm, and yield relevant parameters. The Computer Aided Tri-Dimensional Interface Application (CATIA) software is applied to establish the manufacturing resource base and parametric model of the steel processing workshop. Based on the results of optimized planar logistics, a visual parametric model of the steel processing workshop is constructed, and qualitative and quantitative adjustments then are applied to the model. The method for evaluating the results of the layout is subsequently established through the utilization of AHP. In order to provide a mode of reference to the optimization and layout of the digitalized production workshop, the optimized discrete production workshop will possess a certain level of practical significance.展开更多
We present a numerical method based on genetic algorithm combined with a fictitious domain method for a shape optimization problem governed by an elliptic equation with Dirichlet boundary condition. The technique of t...We present a numerical method based on genetic algorithm combined with a fictitious domain method for a shape optimization problem governed by an elliptic equation with Dirichlet boundary condition. The technique of the immersed boundary method is incorporated into the framework of the fictitious domain method for solving the state equations. Contrary to the conventional methods, our method does not make use of the finite element discretization with obstacle fitted meshes. It conduces to overcoming difficulties arising from re-meshing operations in the optimization process. The method can lead to a reduction in computational effort and is easily programmable. It is applied to a shape reconstruction problem in the airfoil design. Numerical experiments demonstrate the efficiency of the proposed approach.展开更多
The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practi...The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practice.An improved optimal elemental method is presented that defines a new objective function,and as a byproduct,circumvents the need for mass normalized modal shapes,which are also not readily available in practice.To solve the group of nonlinear equations created by the improved optimal method,the Lagrange multiplier method and Matlab function fmincon are employed.To deal with actual complex structures, the float-encoding genetic algorithm(FGA)is introduced to enhance the capability of the improved method.Two examples,a 7- degree of freedom(DOF)mass-spring system and a 53-DOF planar frame,respectively,are updated using the improved method. The example results demonstrate the advantages of the improved method over existing optimal methods,and show that the genetic algorithm is an effective way to update the models used for actual complex structures.展开更多
A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of ...A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.展开更多
For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sec...For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sector.A proper sizing method was essential for achieving the desired 100%renewable energy system of resources.This paper presented a bi-objective optimization formulation for sizing the MRES using a constrained genetic algorithm(GA)coupled with the loss of power supply probability(LPSP)method to achieve the minimal cost of the system and the reliability of the system to the load real time requirement.An optimization App has been developed in MATLAB environment to offer a user-friendly interface and output the optimized design parameters when given the load demand.A case study of a swimming pool building was used to demonstrate the process of the proposed design method.Compared to the conventional distributed energy system,the MRES is feasible with a lower annual total cost(ATC).Additionally,the ATC decreases as the power supply reliability of the renewable system decreases.There is a decrease of 24%of the annual total cost when the power supply probability is equal to 8%compared to the baseline case with 0%power supply probability.展开更多
基金Supported by Major State Basic Research Development Program of China (2012CB720500), National Natural Science Foundation of China (Key Program: Ul162202), National Science Fund for Outstanding Young Scholars (61222303), National Natural Science Foundation of China (21276078, 21206037) and the Fundamental Research Funds for the Central Universities.
文摘The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature. 13enetic algorithm (GA) has been proved to be a teasibte method when the gradient is difficult to calculate. Its advantage is that the control profiles at all time stages are optimized simultaneously, but its convergence is very slow in the later period of evolution and it is easily trapped in the local optimum. In this study, a hybrid improved genetic algorithm (HIGA) for solving dynamic optimization problems is proposed to overcome these defects. Simplex method (SM) is used to perform the local search in the neighborhood of the optimal solution. By using SM, the ideal searching direction of global optimal solution could be found as soon as possible and the convergence speed of the algorithm is improved. The hybrid algorithm presents some improvements, such as protecting the best individual, accepting immigrations, as well as employing adaptive crossover and Ganssian mutation operators. The efficiency of the proposed algorithm is demonstrated by solving several dynamic optimization problems. At last, HIGA is applied to the optimal production of secreted protein in a fed batch reactor and the optimal feed-rate found by HIGA is effective and relatively stable.
文摘For the structural-acoustic radiation optimization problem under external loading,acoustic radiation power was considered to be an objective function in the optimization method. The finite element method(FEM) and boundary element method(BEM) were adopted in numerical calculations,and structural response and the acoustic response were assumed to be de-coupled in the analysis. A genetic algorithm was used as the strategy in optimization. In order to build the relational expression of the pressure objective function and the power objective function,the enveloping surface model was used to evaluate pressure in the acoustic domain. By taking the stiffened panel structural-acoustic optimization problem as an example,the acoustic power and field pressure after optimized was compared. Optimization results prove that this method is reasonable and effective.
文摘This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient.
文摘This paper describes a generalization methodology for nonlinear magnetic field calculation applied on two-dimensional (2-D) finite Volume geometry by incorporating a Jiles-Atherton scalar hysteresis model. The scheme is based upon the definition of modified governing equation derived from Maxwell’s equations considered the magnetization M. This paper shows how to extract optimal parameters for the Jiles-Atherton model of hysteresis by a real coded genetic algorithm approach. The parameters identification is performed by minimizing the mean squared error between experimental and simulated magnetic field curves. The calculated results are validated by experiences performed in an SST’s frame.
基金supported by the Fundamental Research Funds for the Central Universities(YWF-13D2-XX-13)the National High-tech Research and Development Program(863 Program)(2008AA121802)
文摘A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.
文摘To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as an object. A changing weight value method is put forward and a selection formula is modified. Some experiments were implemented on an AUV, TwinBurger. The results shows that this method is effective and feasible.
文摘Anisotropic plates in different applications may have geometric defects such as openings and cracks.The presence of the opening disturbs the heat flow,which creates significant thermal stress around the opening.When the heat flux is high enough,these extreme stresses can lead to structural failure.This article aims to obtain the optimal parameters for achieving the minimum value of the normalized stress near the cutout’s boundary in perforated anisotropic plates utilizing the genetic algorithm.Optimization parameters include the curvature of opening’s corners,orientation angle of opening,fibers angle,heat flux angle,and opening’s elongation.The plate is under heat flux,and the opening’s border is thermally insulated.The stress distribution around the opening is calculated using Lekhnitskii’s complex variable method and complex potential functions.The genetic algorithm is then implemented to find the optimal values for design parameters.The results show that by selecting the optimal parameters related to the anisotropic material and the opening’s geometry,the stress intensity factor of the perforated anisotropic plates is remarkably reduced.Furthermore,this optimization algorithm can be extended to find the optimized parameters and achieve the optimal designs in anisotropic and isotropic perforated plates under thermal loadings.
文摘This paper delineates a conventional buck converter controlled by optimized PID controller where Genetic Algorithm (GA) is employed with a view to enhancing the performance by analyzing the performance parameters. Genetic Algorithm is a probabilistic search algorithm which is substantially used as an optimization technique in power electronics. A bunch of modifications have already been introduced to enhance the performance depending upon the applications. However, in this paper, modified genetic algorithm has been used in order to tune the key parameters in the converter. Hence, an analysis is carried out where the performance of the converter is illustrated in terms of rise time, settling time and percentage of overshoot by deploying GA based PID controller and the overall comparative study is presented. Responses of the overall system are accumulated through rigorous simulation in MATLAB environment.
文摘The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To get solutions in determining routes which are realistic and very close to the actual solution, we use heuristics and metaheuristics which are of the combinatorial optimization type. A literature review of VRPTW, TDVRP, and a metaheuristic such as the genetic algorithm was conducted. In this paper, the implementation of the VRPTW and its extension, the time-dependent VRPTW (TDVRPTW) has been carried out using the model as well as metaheuristics such as the genetic algorithm (GA). The algorithms were implemented, using Matlab and HeuristicLab optimization software. A plugin was developed using Visual C# and DOT NET framework 4.5. Results were tested using Solomon’s 56 benchmark instances classified into groups such as C1, C2, R1, R2, RC1, RC2, with 100 customer nodes, 25 vehicles and each vehicle capacity of 200. The results were comparable to the earlier algorithms developed and in some cases the current algorithm yielded better results in terms of total distance travelled and the average number of vehicles used.
基金supported by the Shandong Provincial Natural Science Foundation(Grant No.ZR2019QEE016)。
文摘As an important process during the cement production,grate cooler plays significance roles on clinker cooling and waste heat recovery.In this paper,we measured experimentally the heat balance of the grate cooler,which provided initial operating parameters for optimization.Then,the grate cooler was simplified into a series-connected heat exchanger network by power flow method.Constructing the equivalent thermal resistance network provided the global constraints by Kirchhoff’s law.On this basis,with the objectives of the minimum entropy generation numbers caused by heat transfer and viscous dissipation,solving a multi-objective optimization model achieved the Pareto Front by genetic algorithm.Then selecting the scheme of the lowest fan power consumption obtained the optimal operating parameters of the grate cooler.The results showed that the total mass flow of the optimized scheme did not change significantly compared with the original scheme,but the fan power consumption was 25.44%lower,and the heat recovery efficiency was 88.43%,which was improved by 11.35%.Furthermore,the analysis showed that the optimal operating parameters were affected by the local heat load.After optimizing the diameter of clinker particles within the allowable industrial range,the clinker with particle diameter of 0.02 m had the optimal performance.
文摘An optimization method to design turbine airfoils using a Genetic Algorithm (GA) design shell coupled directly with a viscous CFD (Computational Fluid Dynamics) analysis code is proposed in this paper. The blade geometry is parameterized and the optimization method is used to search for a blade geometry that will minimize the loss in the turbine cascade passage. The viscous flow prediction code is verified by the experimental data of cascade, which is typical for a gas turbine rotor blade section. A comparative study of the blades designed by the optimization technique and the original one is presented[
基金project supported by the National High-Technology Research and Development Program of China(Grant No.8632005AA642010)
文摘A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions.
基金The authors gratefully acknowledge the financial support of the National Science and Technology Major Projects of China(2016ZX05065 and 2016ZX05042-003).
文摘It is difficult to determine the main controlling factors of tight oil production.In addition to the problem of uncontrollable prediction accuracy,the numerical prediction model established by the main controlling factors will also make the correctly predicted low production samples lose the value of development.Applying the optimization algorithm with fast convergence speed and global optimization to optimize the controllable parameters in the high-precision numerical prediction model can effectively improve the productivity of low production wells with timeliness,and bring greater economic value while saving development cost.Using PCA-GRA method,the sample weight and the weighted correlation ranking results of parameters affecting tight oil production were obtained.Thereupon then the main controlling factors of tight oil production were determined.Then we set up a BP neural network model with by taking the main controlling factors as input and tight oil production as output.The prediction effect of the network was good and can be put into use.The results of sensitivity analysis showed that the network was stable,and the total fracturing fluid volume had the greatest impact on the production of tight oil.Finally,by using genetic algorithm,we optimized the fracturing parameters of all low production well samples in the field data.Combined with the fracturing parameters of all high production well samples and the optimized fracturing parameters of low production wells,the optimal interval of fracturing parameters was given,which can provide guidance for the field fracturing operation.
文摘In this paper a hybrid algorithm which combines the pattern search method and the genetic algorithm for unconstrained optimization is presented. The algorithm is a deterministic pattern search algorithm,but in the search step of pattern search algorithm,the trial points are produced by a way like the genetic algorithm. At each iterate, by reduplication,crossover and mutation, a finite set of points can be used. In theory,the algorithm is globally convergent. The most stir is the numerical results showing that it can find the global minimizer for some problems ,which other pattern search algorithms don't bear.
文摘The research study proposes to examine a three-dimensional visualization program, emphasizing on improving genetic algorithms through the optimization of a layout design-based standard and discrete shipbuilding workshop. By utilizing a steel processing workshop as an example, the principle of minimum logistic costs will be implemented to obtain an ideological equipment layout, and a mathematical model. The objectiveness is to minimize the total necessary distance traveled between machines. An improved control operator is implemented to improve the iterative efficiency of the genetic algorithm, and yield relevant parameters. The Computer Aided Tri-Dimensional Interface Application (CATIA) software is applied to establish the manufacturing resource base and parametric model of the steel processing workshop. Based on the results of optimized planar logistics, a visual parametric model of the steel processing workshop is constructed, and qualitative and quantitative adjustments then are applied to the model. The method for evaluating the results of the layout is subsequently established through the utilization of AHP. In order to provide a mode of reference to the optimization and layout of the digitalized production workshop, the optimized discrete production workshop will possess a certain level of practical significance.
文摘We present a numerical method based on genetic algorithm combined with a fictitious domain method for a shape optimization problem governed by an elliptic equation with Dirichlet boundary condition. The technique of the immersed boundary method is incorporated into the framework of the fictitious domain method for solving the state equations. Contrary to the conventional methods, our method does not make use of the finite element discretization with obstacle fitted meshes. It conduces to overcoming difficulties arising from re-meshing operations in the optimization process. The method can lead to a reduction in computational effort and is easily programmable. It is applied to a shape reconstruction problem in the airfoil design. Numerical experiments demonstrate the efficiency of the proposed approach.
基金The China Hi-Tech R&D Program(863 Program) Project Number 2001AA602023
文摘The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results.This situation occurs when the test modal model is incomplete,as is often the case in practice.An improved optimal elemental method is presented that defines a new objective function,and as a byproduct,circumvents the need for mass normalized modal shapes,which are also not readily available in practice.To solve the group of nonlinear equations created by the improved optimal method,the Lagrange multiplier method and Matlab function fmincon are employed.To deal with actual complex structures, the float-encoding genetic algorithm(FGA)is introduced to enhance the capability of the improved method.Two examples,a 7- degree of freedom(DOF)mass-spring system and a 53-DOF planar frame,respectively,are updated using the improved method. The example results demonstrate the advantages of the improved method over existing optimal methods,and show that the genetic algorithm is an effective way to update the models used for actual complex structures.
基金Supported by the Project of Ministry of Education and Finance(No.200512)the Project of the State Key Laboratory of ocean engineering(GKZD010053-10)
文摘A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.
基金Project(52108101)supported by the National Natural Science Foundation of ChinaProjects(2020GK4057,2021JJ40759)supported by the Hunan Provincial Science and Technology Department,China。
文摘For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sector.A proper sizing method was essential for achieving the desired 100%renewable energy system of resources.This paper presented a bi-objective optimization formulation for sizing the MRES using a constrained genetic algorithm(GA)coupled with the loss of power supply probability(LPSP)method to achieve the minimal cost of the system and the reliability of the system to the load real time requirement.An optimization App has been developed in MATLAB environment to offer a user-friendly interface and output the optimized design parameters when given the load demand.A case study of a swimming pool building was used to demonstrate the process of the proposed design method.Compared to the conventional distributed energy system,the MRES is feasible with a lower annual total cost(ATC).Additionally,the ATC decreases as the power supply reliability of the renewable system decreases.There is a decrease of 24%of the annual total cost when the power supply probability is equal to 8%compared to the baseline case with 0%power supply probability.