The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda arra...The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda array; while the ratio factor of spacing to length as well as the ratio of length to diameter of the elements are optimized for LPDA array. The results show that the main parameters, such as gain and pattern, have been improved apparently; and the high back lobe level of LPDA can be reduced greatly, therefore, GA is a very competent method for optimizing the linear array as well as in other fields.展开更多
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t...Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.展开更多
An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach....An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach. This algorithm has been validated to be superior to the simple genetic algorithm (SGA) by a complicated binary testing function. Then the proposed algorithm is applied to optimizing the planar retrodirective array to reduce the cost of the hardware. The fitness function is discussed in the optimization example. After optimization, the sparse planar retrodirective antenna array keeps excellent retrodirectivity, while the array architecture has been simplified by 34%. The optimized antenna array can replace uniform full array effectively. Results show that this work will gain more engineering benefits in practice.展开更多
The development of new technologies in smart cities is often hailed as it becomes a necessity to solve many problems like energy consumption and transportation. Wireless networks are part of these technologies but imp...The development of new technologies in smart cities is often hailed as it becomes a necessity to solve many problems like energy consumption and transportation. Wireless networks are part of these technologies but implementation of several antennas, using different frequency bandwidths for many applications might introduce a negative effect on human health security. In wireless networks, most antennas generate sidelobes SSL. SSL causes interference and can be an additional resource for RF power that can affect human being health. This paper aims to study algorithms that can reduce SSL. The study concerns typical uniform linear antenna arrays. Different optimum side lobe level reduction algorithms are presented. Genetic algorithm GA, Chebyshev, and Particle Swarm Optimization algorithm are used in the optimization process. A comparative study between the indicated algorithms in terms of stability, precision, and running time is shown. Results show that using these algorithms in optimizing antenna parameters can reduce SSL. A comparison of these algorithms is carried out and results show the difference between them in terms of running time and SSL reduction Level.展开更多
To achieve high quality images from the sky by extending an existing interferometric array, in this work, the Geometrical Method (GM), Genetic Algorithm (GA), and Division Algorithm (DA) are compared. These methods ar...To achieve high quality images from the sky by extending an existing interferometric array, in this work, the Geometrical Method (GM), Genetic Algorithm (GA), and Division Algorithm (DA) are compared. These methods are each applied independently to an interferometer array starting from the same initial conditions. Using the GM method, the spiral configuration is suggested as an optimum arrangement that provides the desired u-v coverage with low side lobe levels (SLLs). Using the GA method, as the number of generations is increased, the unsampled cells are reduced, enhancing the imaging quality. As such, the algorithm improves the overlapped samples as it works with a greater number of generations. Moreover, the GA is able to suppress the SLL. Finally, the DA is applied to such an array. Results show that the DA is able to process the sampled data with less overlapping of the data in the snapshot observations, in comparison to the other discussed configurations in this paper;effectively the DA reduces the overlapped samples, such that it is more efficient than the GA. The configuration of antennas that arrives by applying the DA method can achieve a certain image quality with less overlapping, as compared to the configuration arriving by applying the GA method. The calculated SLLs for the DA configuration are used to demonstrate that the efficiency of the DA is potentially better than that of the GA. Moreover, the GA and DA algorithms discussed in this study are applied to an array of 10 antennas with coordinates that represent the antennas deployed in Malaysia. Results show that the DA can reduce the overlapping of the samples more efficiently than the GA for a 6-hour tracking observation and in terms of unsampled cells the DA has the same efficiency of the GA.展开更多
This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic ...This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic algorithm (CGA) is proposed. The proposed method utilizes chaos to optimize initial population for the genetic algorithm (GA) and introduces chaotic disturbance into the genetic mutation, thereby improving the ability of the GA to search for the global optimum. Numerical simulations demonstrate that the accuracy and stability of the worst-case analysis of the proposed approach are superior to the GA. And the proposed algorithm can be used easily for the error tolerant design of antenna arrays.展开更多
A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone con...A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.展开更多
Genetic algorithm(GA)is utilized to design microstrip patch antenna shapes for broad bandwidth.A new project based on GA and high frequency simulation software(HFSS)is proposed to perform optimization.Reasonable agree...Genetic algorithm(GA)is utilized to design microstrip patch antenna shapes for broad bandwidth.A new project based on GA and high frequency simulation software(HFSS)is proposed to perform optimization.Reasonable agreement between simulated results and measured results of the GA-optimized design is obtained.The optimized patch design exhibits a three-fold enhancement in bandwidth when contrasted with a standard square microstrip antenna,showing the validity of this project.展开更多
Directional modulation is one of the hot topics in data security researches.To fulfill the requirements of communication security in wireless environment with multiple paths,this study takes into account the factors o...Directional modulation is one of the hot topics in data security researches.To fulfill the requirements of communication security in wireless environment with multiple paths,this study takes into account the factors of reflections and antenna radiation pattern for directional modulation.Unlike other previous works,a novel multiple-reflection model,which is more realistic and complex than simplified two-ray reflection models,is proposed based on two reflectors.Another focus is a quantum genetic algorithm applied to optimize antenna excitation in a phased directional modulation antenna array.The quantum approach has strengths in convergence speed and the globe searching ability for the complicated model with the large-size antenna array and multiple paths.From this,a phased directional modulation transmission system can be optimized as regards communication safety and improve performance based on the constraint of the pattern of the antenna array.Our work can spur applications of the quantum evolutionary algorithm in directional modulation technology,which is also studied.展开更多
A six-element Yagi-Uda array is optimally designed using Central Force Optimization (CFO) with a small amount of pseudo randomly injected negative gravity. CFO is a simple, deterministic metaheuristic analogizing grav...A six-element Yagi-Uda array is optimally designed using Central Force Optimization (CFO) with a small amount of pseudo randomly injected negative gravity. CFO is a simple, deterministic metaheuristic analogizing gravitational kinematics (motion of masses under the influence of gravity). It has been very effective in addressing a wide range of antenna and other problems and normally employs only positive gravity. With positive gravity the six element CFO-designed Yagi array described here exhibits excellent performance with respect to the objectives of impedance bandwidth and forward gain. This paper addresses the question of what happens when a small amount of negative gravity is injected into the CFO algorithm. Does doing so have any effect, beneficial, negative or neutral? In this particular case negative gravity improves CFO’s exploration and creates a region of optimality containing many designs that perform about as well as or better than the array discovered with only positive gravity. Without some negative gravity these array configurations are overlooked. This Yagi-Uda array design example suggests that antennas optimized or designed using deterministic CFO may well benefit by including a small amount of negative gravity, and that the negative gravity approach merits further study.展开更多
As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle ...As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle and genetic algorithm was presented in this paper.First,based on the adaptive theory,a given array was supposed as an adaptive array and its sidelobes were reduced by assigning a number of interference signals in the sidelobe region.An initial beam pattern was obtained after several iterations and adjustments of the interference intensity,and based on its parameters,a desired pattern was created.Then,an objective function based on the difference between the designed and desired patterns can be constructed.The pattern can be optimized by using the genetic algorithm to minimize the objective function.A design example for a double-circular array demonstrates the effectiveness of this method.Compared with the approaches existing before,the proposed method can reduce the sidelobe effectively and achieve less synthesis magnitude error in the mainlobe.The method can search for optimum attainable pattern for the specific elements if the desired pattern can not be found.展开更多
In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding...In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding variables. Crane metal structure optimal design(CMSOD) belongs to a constrained nonlinear optimization problem with discrete variables. A novel algorithm combining ant colony algorithm with a mutation-based local search(ACAM) is developed and used for a real CMSOD for the first time. In the algorithm model, the encoded mode of continuous array elements is introduced. This not only avoids the need to round optimization design variables during mixed variable optimization, but also facilitates the construction of heuristic information, and the storage and update of the ant colony pheromone. Together with the proposed ACAM, a genetic algorithm(GA) and particle swarm optimization(PSO) are used to optimize the metal structure of a crane. The optimization results show that the convergence speed of ACAM is approximately 20% of that of the GA and around 11% of that of the PSO. The objective function value given by ACAM is 22.23% less than the practical design value, a reduction of 16.42% over the GA and 3.27% over the PSO. The developed ACAM is an effective intelligent method for CMSOD and superior to other methods.展开更多
Pattern synthesis in 3-D opportunistic digital array radar(ODAR) becomes complex when a multitude of antennas are considered to be randomly distributed in a three dimensional space.In order to obtain an optimal patter...Pattern synthesis in 3-D opportunistic digital array radar(ODAR) becomes complex when a multitude of antennas are considered to be randomly distributed in a three dimensional space.In order to obtain an optimal pattern,several freedoms must be constrained.A new pattern synthesis approach based on the improved genetic algorithm(GA) using the least square fitness estimation(LSFE) method is proposed.Parameters optimized by this method include antenna locations,stimulus states and phase weights.The new algorithm demonstrates that the fitness variation tendency of GA can be effectively predicted after several "eras" by the LSFE method.It is shown that by comparing the variation of LSFE curve slope,the GA operator can be adaptively modified to avoid premature convergence of the algorithm.The validity of the algorithm is verified using computer implementation.展开更多
In order to overcome the drawbacks of standard particle swarm optimization(PSO)algorithm,such as prematurity and easily trapping in local optimum,a modified PSO algorithm is proposed,in which special techniques,as glo...In order to overcome the drawbacks of standard particle swarm optimization(PSO)algorithm,such as prematurity and easily trapping in local optimum,a modified PSO algorithm is proposed,in which special techniques,as global best perturbation and inertia weight jump threshold are adopted.The convergence speed and accuracy of the algo-rithm are improved.The test by some benchmark problems shows that the proposed algorithm achieves relatively higher performance.Thereafter,the applications of the modified PSO in the radiation pattern synthesis of antenna arrays are presented.展开更多
The investigation of the effect of electrical and mechanical errors on the performance of a large active phased array antenna is studied. These errors can decrease the antenna performance, for instance, the gain reduc...The investigation of the effect of electrical and mechanical errors on the performance of a large active phased array antenna is studied. These errors can decrease the antenna performance, for instance, the gain reduction, side lobe level enhancement, and incorrect beam direction. In order to improve the performance of the antenna in the presence of these errors, phase error correction of large phased array antennas using the genetic algorithm(GA) is implemented. By using the phase compensation method, the antenna overall radiation pattern is recovered close to the ideal radiation pattern without error. By applying the simulation data to a 32×40 array of elements with a square grid at the frequency of S-band and measurement of the radiation pattern, the effectiveness of the proposed method is verified.展开更多
To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The sc...To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The scheme is implemented by a dual coding genetic algorithm(GA). Phase and amplitude of array weight vectors for beam shaping are encoded by real coding and finite length binary coding,respectively,which,maintaining accuracy of results,reduces the amplitude dynamic range and improves the efficiency of power amplifiers. The presented algorithm,compared with complex-coded GA,increases the convergence rate due to the search space's decrease. In order to overcome the prematurity and obtain better global optimization or quasi-global optimization,a new dual coding GA based on "species diversity retention" strategy and adaptive crossover and mutation probability are presented.展开更多
A planar array antenna with arbitrary geometry synthesis technique based on genetic algorithm is discussed. This approach avoids coding/decoding and directly works with complex numbers to simplify computing program an...A planar array antenna with arbitrary geometry synthesis technique based on genetic algorithm is discussed. This approach avoids coding/decoding and directly works with complex numbers to simplify computing program and to speed up computation. This approach uses two crossover operators that can over-come premature convergence and the dependence of convergence on initial population. Simulation results show that this method is capable of synthesizing complex pattern shapes of planar arrays with arbitrary ge-ometry and can realize good sidelobe suppression at the same time.展开更多
文摘The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda array; while the ratio factor of spacing to length as well as the ratio of length to diameter of the elements are optimized for LPDA array. The results show that the main parameters, such as gain and pattern, have been improved apparently; and the high back lobe level of LPDA can be reduced greatly, therefore, GA is a very competent method for optimizing the linear array as well as in other fields.
基金Research Supporting Project Number(RSPD2023R 585),King Saud University,Riyadh,Saudi Arabia.
文摘Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.
文摘An improved adaptive genetic algorithm is presented in this paper. It primarily includes two modified methods: one is novel adaptive probabilities of crossover and mutation, the other is truncated selection approach. This algorithm has been validated to be superior to the simple genetic algorithm (SGA) by a complicated binary testing function. Then the proposed algorithm is applied to optimizing the planar retrodirective array to reduce the cost of the hardware. The fitness function is discussed in the optimization example. After optimization, the sparse planar retrodirective antenna array keeps excellent retrodirectivity, while the array architecture has been simplified by 34%. The optimized antenna array can replace uniform full array effectively. Results show that this work will gain more engineering benefits in practice.
文摘The development of new technologies in smart cities is often hailed as it becomes a necessity to solve many problems like energy consumption and transportation. Wireless networks are part of these technologies but implementation of several antennas, using different frequency bandwidths for many applications might introduce a negative effect on human health security. In wireless networks, most antennas generate sidelobes SSL. SSL causes interference and can be an additional resource for RF power that can affect human being health. This paper aims to study algorithms that can reduce SSL. The study concerns typical uniform linear antenna arrays. Different optimum side lobe level reduction algorithms are presented. Genetic algorithm GA, Chebyshev, and Particle Swarm Optimization algorithm are used in the optimization process. A comparative study between the indicated algorithms in terms of stability, precision, and running time is shown. Results show that using these algorithms in optimizing antenna parameters can reduce SSL. A comparison of these algorithms is carried out and results show the difference between them in terms of running time and SSL reduction Level.
文摘To achieve high quality images from the sky by extending an existing interferometric array, in this work, the Geometrical Method (GM), Genetic Algorithm (GA), and Division Algorithm (DA) are compared. These methods are each applied independently to an interferometer array starting from the same initial conditions. Using the GM method, the spiral configuration is suggested as an optimum arrangement that provides the desired u-v coverage with low side lobe levels (SLLs). Using the GA method, as the number of generations is increased, the unsampled cells are reduced, enhancing the imaging quality. As such, the algorithm improves the overlapped samples as it works with a greater number of generations. Moreover, the GA is able to suppress the SLL. Finally, the DA is applied to such an array. Results show that the DA is able to process the sampled data with less overlapping of the data in the snapshot observations, in comparison to the other discussed configurations in this paper;effectively the DA reduces the overlapped samples, such that it is more efficient than the GA. The configuration of antennas that arrives by applying the DA method can achieve a certain image quality with less overlapping, as compared to the configuration arriving by applying the GA method. The calculated SLLs for the DA configuration are used to demonstrate that the efficiency of the DA is potentially better than that of the GA. Moreover, the GA and DA algorithms discussed in this study are applied to an array of 10 antennas with coordinates that represent the antennas deployed in Malaysia. Results show that the DA can reduce the overlapping of the samples more efficiently than the GA for a 6-hour tracking observation and in terms of unsampled cells the DA has the same efficiency of the GA.
基金supported by the National Natural Science Foundation of China (60901055)
文摘This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic algorithm (CGA) is proposed. The proposed method utilizes chaos to optimize initial population for the genetic algorithm (GA) and introduces chaotic disturbance into the genetic mutation, thereby improving the ability of the GA to search for the global optimum. Numerical simulations demonstrate that the accuracy and stability of the worst-case analysis of the proposed approach are superior to the GA. And the proposed algorithm can be used easily for the error tolerant design of antenna arrays.
基金supported by the Fundamental Research Funds for the Central Universities(YWF-13D2-XX-13)the National High-tech Research and Development Program(863 Program)(2008AA121802)
文摘A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.
基金This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.200700130046)the National Natural Science Foundation of China(Grant Nos.60771060 and 60971078).
文摘Genetic algorithm(GA)is utilized to design microstrip patch antenna shapes for broad bandwidth.A new project based on GA and high frequency simulation software(HFSS)is proposed to perform optimization.Reasonable agreement between simulated results and measured results of the GA-optimized design is obtained.The optimized patch design exhibits a three-fold enhancement in bandwidth when contrasted with a standard square microstrip antenna,showing the validity of this project.
基金This work was supported by the NSFC(Grant Nos.61671087,61962009 and 61003287)the Fok Ying Tong Education Foundation(Grant No.131067)+3 种基金the Major Scientific and Technological Special Project of Guizhou Province(Grant No.20183001)the Foundation of State Key Laboratory of Public Big Data(Grant No.2018BDKFJJ018)the High-quality and Cutting-edge Disciplines Construction Project for Universities in Beijing(Internet Information,Communication University of China)the Fundamental Research Funds for the Central Universities(Nos.2019XD-A02,328201915,328201917 and 328201916).
文摘Directional modulation is one of the hot topics in data security researches.To fulfill the requirements of communication security in wireless environment with multiple paths,this study takes into account the factors of reflections and antenna radiation pattern for directional modulation.Unlike other previous works,a novel multiple-reflection model,which is more realistic and complex than simplified two-ray reflection models,is proposed based on two reflectors.Another focus is a quantum genetic algorithm applied to optimize antenna excitation in a phased directional modulation antenna array.The quantum approach has strengths in convergence speed and the globe searching ability for the complicated model with the large-size antenna array and multiple paths.From this,a phased directional modulation transmission system can be optimized as regards communication safety and improve performance based on the constraint of the pattern of the antenna array.Our work can spur applications of the quantum evolutionary algorithm in directional modulation technology,which is also studied.
文摘A six-element Yagi-Uda array is optimally designed using Central Force Optimization (CFO) with a small amount of pseudo randomly injected negative gravity. CFO is a simple, deterministic metaheuristic analogizing gravitational kinematics (motion of masses under the influence of gravity). It has been very effective in addressing a wide range of antenna and other problems and normally employs only positive gravity. With positive gravity the six element CFO-designed Yagi array described here exhibits excellent performance with respect to the objectives of impedance bandwidth and forward gain. This paper addresses the question of what happens when a small amount of negative gravity is injected into the CFO algorithm. Does doing so have any effect, beneficial, negative or neutral? In this particular case negative gravity improves CFO’s exploration and creates a region of optimality containing many designs that perform about as well as or better than the array discovered with only positive gravity. Without some negative gravity these array configurations are overlooked. This Yagi-Uda array design example suggests that antennas optimized or designed using deterministic CFO may well benefit by including a small amount of negative gravity, and that the negative gravity approach merits further study.
文摘As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle and genetic algorithm was presented in this paper.First,based on the adaptive theory,a given array was supposed as an adaptive array and its sidelobes were reduced by assigning a number of interference signals in the sidelobe region.An initial beam pattern was obtained after several iterations and adjustments of the interference intensity,and based on its parameters,a desired pattern was created.Then,an objective function based on the difference between the designed and desired patterns can be constructed.The pattern can be optimized by using the genetic algorithm to minimize the objective function.A design example for a double-circular array demonstrates the effectiveness of this method.Compared with the approaches existing before,the proposed method can reduce the sidelobe effectively and achieve less synthesis magnitude error in the mainlobe.The method can search for optimum attainable pattern for the specific elements if the desired pattern can not be found.
基金Supported by National Natural Science Foundation of China(Grant No.51275329)the Youth Fund Program of Taiyuan University of Science and Technology,China(Grant No.20113014)
文摘In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding variables. Crane metal structure optimal design(CMSOD) belongs to a constrained nonlinear optimization problem with discrete variables. A novel algorithm combining ant colony algorithm with a mutation-based local search(ACAM) is developed and used for a real CMSOD for the first time. In the algorithm model, the encoded mode of continuous array elements is introduced. This not only avoids the need to round optimization design variables during mixed variable optimization, but also facilitates the construction of heuristic information, and the storage and update of the ant colony pheromone. Together with the proposed ACAM, a genetic algorithm(GA) and particle swarm optimization(PSO) are used to optimize the metal structure of a crane. The optimization results show that the convergence speed of ACAM is approximately 20% of that of the GA and around 11% of that of the PSO. The objective function value given by ACAM is 22.23% less than the practical design value, a reduction of 16.42% over the GA and 3.27% over the PSO. The developed ACAM is an effective intelligent method for CMSOD and superior to other methods.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61071164)
文摘Pattern synthesis in 3-D opportunistic digital array radar(ODAR) becomes complex when a multitude of antennas are considered to be randomly distributed in a three dimensional space.In order to obtain an optimal pattern,several freedoms must be constrained.A new pattern synthesis approach based on the improved genetic algorithm(GA) using the least square fitness estimation(LSFE) method is proposed.Parameters optimized by this method include antenna locations,stimulus states and phase weights.The new algorithm demonstrates that the fitness variation tendency of GA can be effectively predicted after several "eras" by the LSFE method.It is shown that by comparing the variation of LSFE curve slope,the GA operator can be adaptively modified to avoid premature convergence of the algorithm.The validity of the algorithm is verified using computer implementation.
文摘In order to overcome the drawbacks of standard particle swarm optimization(PSO)algorithm,such as prematurity and easily trapping in local optimum,a modified PSO algorithm is proposed,in which special techniques,as global best perturbation and inertia weight jump threshold are adopted.The convergence speed and accuracy of the algo-rithm are improved.The test by some benchmark problems shows that the proposed algorithm achieves relatively higher performance.Thereafter,the applications of the modified PSO in the radiation pattern synthesis of antenna arrays are presented.
文摘The investigation of the effect of electrical and mechanical errors on the performance of a large active phased array antenna is studied. These errors can decrease the antenna performance, for instance, the gain reduction, side lobe level enhancement, and incorrect beam direction. In order to improve the performance of the antenna in the presence of these errors, phase error correction of large phased array antennas using the genetic algorithm(GA) is implemented. By using the phase compensation method, the antenna overall radiation pattern is recovered close to the ideal radiation pattern without error. By applying the simulation data to a 32×40 array of elements with a square grid at the frequency of S-band and measurement of the radiation pattern, the effectiveness of the proposed method is verified.
基金The project supported by National Natural Science Foundation of China (No. 60572095)Research Foundation for Doctors of ZZULI
文摘To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The scheme is implemented by a dual coding genetic algorithm(GA). Phase and amplitude of array weight vectors for beam shaping are encoded by real coding and finite length binary coding,respectively,which,maintaining accuracy of results,reduces the amplitude dynamic range and improves the efficiency of power amplifiers. The presented algorithm,compared with complex-coded GA,increases the convergence rate due to the search space's decrease. In order to overcome the prematurity and obtain better global optimization or quasi-global optimization,a new dual coding GA based on "species diversity retention" strategy and adaptive crossover and mutation probability are presented.
文摘A planar array antenna with arbitrary geometry synthesis technique based on genetic algorithm is discussed. This approach avoids coding/decoding and directly works with complex numbers to simplify computing program and to speed up computation. This approach uses two crossover operators that can over-come premature convergence and the dependence of convergence on initial population. Simulation results show that this method is capable of synthesizing complex pattern shapes of planar arrays with arbitrary ge-ometry and can realize good sidelobe suppression at the same time.