期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
我国社区卫生人力资源预测 被引量:2
1
作者 焦奥南 邵译莹 +1 位作者 莫颖宁 张诗梦 《中国卫生资源》 北大核心 2022年第5期644-649,共6页
目的 分析我国社区卫生人力资源发展趋势,以期为健康中国建设提供参考。方法 通过MATLAB R 2018 A建立灰色遗传算法优化(genetic algorithm-back propagation,GA-BP)神经网络组合模型,预测2021—2023年我国社区卫生人力资源,并比较各单... 目的 分析我国社区卫生人力资源发展趋势,以期为健康中国建设提供参考。方法 通过MATLAB R 2018 A建立灰色遗传算法优化(genetic algorithm-back propagation,GA-BP)神经网络组合模型,预测2021—2023年我国社区卫生人力资源,并比较各单预测模型与组合模型预测精度。结果 组合预测模型精度较好,卫生人员和卫生技术人员网络模型的均方误差(mean squared error,MSE) 和平均绝对百分比误差(mean absolute percentage error,MAPE) 的值分别为0.020 6、0.216 2%和0.019 5、0.167 4%,优于单模型预测。模型预测结果合理,我国社区卫生人员数和卫生技术人员数均保持增长趋势,2023年可分别达到71.403 8万人和60.029 0万人。结论 灰色-GA-BP神经网络组合预测模型适合我国社区卫生人力资源预测,随着医疗服务需求量的增加和新型冠状病毒肺炎疫情防控的常态化,社区卫生人力资源发展规模将逐渐提升,应注重各类卫生人才培训,保障社区卫生人员的切身利益,提升社区医疗服务能力。 展开更多
关键词 遗传算法优化神经网络genetic algorithm-back propagation neural network ga-bp neural network 人力资源human resource 社区卫生community health 预测predict
下载PDF
Research on Flashover Voltage Prediction of Catenary Insulator Based on CaSO_(4) Pollution with Different Mass Fraction
2
作者 Sihua Wang Junjun Wang +2 位作者 Lijun Zhou Long Chen Lei Zhao 《Energy Engineering》 EI 2022年第1期219-236,共18页
Pollution flashover accidents occur frequently in railway OCS in saline-alkali areas.To accurately predict the pollution flashover voltage of insulators,a pollution flashover warning should be made in advance.Accordin... Pollution flashover accidents occur frequently in railway OCS in saline-alkali areas.To accurately predict the pollution flashover voltage of insulators,a pollution flashover warning should be made in advance.According to the operating environment of insulators along the Qinghai-Tibet railway,the pollution flashover experiments were designed for the cantilever composite insulator FQBG-25/12.Through the experiments,the flashover voltage under the influence of soluble contaminant density(SCD)of different pollution components,non-soluble deposit density(NSDD),temperature(T),and atmospheric pressure(P)was obtained.On this basis,the GA-BP neural network prediction model was established.P,SCD,NSDD,CaSO_(4) mass fraction(w(CaSO_(4))),and T were taken as input parameters,50%flashover voltage(U_(50%))of the insulator was taken as output parameters.The results showed that the prediction deviation was less than 10%,which meets the basic engineering requirements.The results could not only provide early warning for the anti-pollution flashover work of the railway power supply department,but also be used as an auxiliary contrast to verify the accuracy of the results of the experiments,and provide a theoretical basis for the classification of pollution levels in different regions. 展开更多
关键词 Overhead contact system w(CaSO_(4)) INSULATOR pollution flashover test genetic algorithm-back propagation(ga-bp)neural network flashover voltage prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部