Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne...Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.展开更多
The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda arra...The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda array; while the ratio factor of spacing to length as well as the ratio of length to diameter of the elements are optimized for LPDA array. The results show that the main parameters, such as gain and pattern, have been improved apparently; and the high back lobe level of LPDA can be reduced greatly, therefore, GA is a very competent method for optimizing the linear array as well as in other fields.展开更多
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str...Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.展开更多
The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure...The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective.Compared with no optimization,the overall system dynamic response speed is significantly improved.展开更多
A splicing system based genetic algorithm is proposed to optimize dynamical radial basis function(RBF)neural network,which is used to extract valuable process information from input output data.The novel RBF net-work ...A splicing system based genetic algorithm is proposed to optimize dynamical radial basis function(RBF)neural network,which is used to extract valuable process information from input output data.The novel RBF net-work training technique includes the network structure into the set of function centers by compromising between the conflicting requirements of reducing prediction error and simultaneously decreasing model complexity.The ef-fectiveness of the proposed method is illustrated through the development of dynamic models as a benchmark discrete example and a continuous stirred tank reactor by comparing with several different RBF network training methods.展开更多
Smooth constraint is important in linear inversion, but it is difficult to apply directly to model parameters in genetic algorithms. If the model parameters are smoothed in iteration, the diversity of models will be g...Smooth constraint is important in linear inversion, but it is difficult to apply directly to model parameters in genetic algorithms. If the model parameters are smoothed in iteration, the diversity of models will be greatly suppressed and all the models in population will tend to equal in a few iterations, so the optimal solution meeting requirement can not be obtained. In this paper, an indirect smooth constraint technique is introduced to genetic inversion. In this method, the new models produced in iteration are smoothed, then used as theoretical models in calculation of misfit function, but in process of iteration only the original models are used in order to keep the diversity of models. The technique is effective in inversion of surface wave and receiver function. Using this technique, we invert the phase velocity of Raleigh wave in the Tibetan Plateau, revealing the horizontal variation of S wave velocity structure near the center of the Tibetan Plateau. The results show that the S wave velocity in the north is relatively lower than that in the south. For most paths there is a lower velocity zone with 12-25 km thick at the depth of 15-40 km. The lower velocity zone in upper mantle is located below the depth of 100 km, and the thickness is usually 40-80 km, but for a few paths reach to 100 km thick. Among the area of Ando, Maqi and Ushu stations, there is an obvious lower velocity zone with the lowest velocity of 4.2-4.3 km/s at the depth of 90-230 km. Based on the S wave velocity structures of different paths and former data, we infer that the subduction of the Indian Plate is delimited nearby the Yarlung Zangbo suture zone.展开更多
In this paper the simple generation algorithms are improved. According to the geometric meaning of the structural reliability index, a method is proposed to deal with the variables in the standard normal space. With c...In this paper the simple generation algorithms are improved. According to the geometric meaning of the structural reliability index, a method is proposed to deal with the variables in the standard normal space. With consideration of variable distribution, the correlation coefficient of the variables and its fuzzy reliability index, the feasibility and the reliability of the algorithms are proved with an example of structural reliability analysis and optimization.展开更多
This paper presents an aerodynamic design of a small transonic fan by 3D viscous RNS solver combined with genetic algorithms.The aerodynamic design system based on the 3D viscous RNS solver reduces the dependency on t...This paper presents an aerodynamic design of a small transonic fan by 3D viscous RNS solver combined with genetic algorithms.The aerodynamic design system based on the 3D viscous RNS solver reduces the dependency on the design experience for designers.Furthermore the optimum with genetic algorithms is an effective method for improving the transonic fan performance as a part of the design system.The design result showed that the transonic fan designed by this method reaches the design requirement even with more efficiency value.展开更多
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization v...A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization variables,which are decision factors of shapes of membrane structures.Three objectives are proposed including maximization of stiffness,maximum uniformity of stress and minimum reaction under external loads.Pareto Multi-objective Genetic Algorithm is introduced to solve the Pareto solutions.Consequently,the dependence of the optimality upon the optimization variables is derived to provide guidelines on how to determine design parameters.Moreover,several examples illustrate the proposed methods and applications.The study shows that the multi-objective optimization method in this paper is feasible and efficient for membrane structures;the research on Pareto solutions can provide explicit and useful guidelines for shape design of membrane structures.展开更多
In this article, The genetic algorithm method was proposed, that is, to establish the box structure's nonlinear three-dimension optimization numerical model based on thermo-mechanical coupling algorithm, and the obje...In this article, The genetic algorithm method was proposed, that is, to establish the box structure's nonlinear three-dimension optimization numerical model based on thermo-mechanical coupling algorithm, and the objective function of welding distortion has been utilized to determine an optimum welding sequence by optimization simulation. The validity of genetic algorithm method combining with the thermo-mechanical nonlinear finite element model is verified by comparison with the experimental data where available. By choosing the appropriate objective function for the considered case, an optimum weldiing.sequence is determined by a genetic algorithm. All done in this study indicates that the new method presented in this article will have important practical application for designing the welding technical parameters in the future.展开更多
The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipula...The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected.展开更多
In this paper, we report in-depth analysis and research on the optimizing computer network structure based on genetic algorithm and modified convex optimization theory. Machine learning method has been widely used in ...In this paper, we report in-depth analysis and research on the optimizing computer network structure based on genetic algorithm and modified convex optimization theory. Machine learning method has been widely used in the background and one of its core problems is to solve the optimization problem. Unlike traditional batch algorithm, stochastic gradient descent algorithm in each iteration calculation, the optimization of a single sample point only losses could greatly reduce the memory overhead. The experiment illustrates the feasibility of our proposed approach.展开更多
In order to decrease the number of design variables and improve the efficiency of com- posite structure optimal design, a single-level composite structure optimization method based on a tapered model is presented. Com...In order to decrease the number of design variables and improve the efficiency of com- posite structure optimal design, a single-level composite structure optimization method based on a tapered model is presented. Compared with the conventional multi-level composite structure opti- mization method, this single-level method has many advantages. First, by using a distance variable and a ply group variable, the number of design variables is decreased evidently and independent with the density of sub-regions, which makes the single-level method very suitable for large-scale composite structures. Second, it is very convenient to optimize laminate thickness and stacking sequence in the same level, which probably improves the quality of optimal result. Third, ply con-tinuity can be guaranteed between sub-regions in the single-level method, which could reduce stress concentration and manufacturing difficulty. An example of a composite wing is used to demonstrate the advantages and competence of the single-level method proposed.展开更多
A novel genetic algorithm (NGA) is proposed, which possesses micro-regulation and renascence operation. The optimized variable searching interval is regulated gradually according to the sub-group of excellent individu...A novel genetic algorithm (NGA) is proposed, which possesses micro-regulation and renascence operation. The optimized variable searching interval is regulated gradually according to the sub-group of excellent individuals. The NGA is used to optimize the parameters of the variable structure control (VSC), which satisfies the new reaching law and sliding mode. It is used in robot control systems. Simulation results are given.展开更多
The paper proposes an evolutionary computational model, multiple structure computational model,from simulaing the behavior of the ecosystem. Some numerical experiments shoal the new model can solve some GA-hard proble...The paper proposes an evolutionary computational model, multiple structure computational model,from simulaing the behavior of the ecosystem. Some numerical experiments shoal the new model can solve some GA-hard problems. Using the concept of adaility in abaptability' in ecology, we give a theoretical analysis to explain why the new model is efficient.展开更多
In this paper, adaptive genetic algorithm (AGA) is applied to topology optimization of truss structure with frequency domain excitations. The optimization constraints include fundamental frequency, displacement resp...In this paper, adaptive genetic algorithm (AGA) is applied to topology optimization of truss structure with frequency domain excitations. The optimization constraints include fundamental frequency, displacement responses under force excitations and acceleration responses under foundation acceleration excitations. The roulette wheel selection operator, adaptive crossover and mutation operators are used as genetic operators. Some heuristic strategies are put forward to direct the deletion of the extra bars and nodes on truss structures. Three examples demonstrate that the proposed method can yield the optimum structure form and the lightest weight of the given ground structure while satisfying dynamic response constraints.展开更多
The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structur...The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structural health condition monitoring. In this paper, a three-dimensional finite-element model is established for a highway bridge over a railway on No.312 National Highway and the ambient test is carried out in site, the dynamic characteristics of the bridge are studied using the finite-element analysis and ambient vibration measurements. Comparison between the theoretical and experimental results shows that the frequency differences of the modes range between 0.44% and 8.77%. If the measurement is more reliable, the finite element model updating is necessary. Thus, a set of design variables is selected based on sensitivity analysis, then the finite element model of the bridge is updated based on optimization algorithm. The results of model updating show that the proposed updating method in this paper is more simple and effective, the updated finite element model can reflect the dynamic characteristics of the bridge better, the analytical results can provide the theoretical basis for damage identification and health condition monitoring of the bridge.展开更多
The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will ...The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will be unacceptable in engineering practice due to the large amount of evaluation needed for the algorithm. So, a new interactive optimization algorithm-interactive multi-objective particle swarm optimization (IMOPSO) is presented. IMOPSO is efficient, simple and operable. The decision-maker can expediently determine the accurate preference in IMOPSO. IMOPSO is used to perform the pylon structure optimization design of an airplane, and a satisfactory design is achieved after only 12 generations of IMOPSO evolutions. Compared with original design, the maximum displacement of the satisfactory design is reduced, and the mass of the satisfactory design is decreased for 22%.展开更多
This paper discusses the inversion of velocity structure and hypocenters location in the Beijing Tianjin Tangshan Zhangjiakou area by genetic algorithm. The hypocenters location of sele...This paper discusses the inversion of velocity structure and hypocenters location in the Beijing Tianjin Tangshan Zhangjiakou area by genetic algorithm. The hypocenters location of selected earthquakes and crustal structure of this area are obtained using the travel time data of local earthquakes acquired by the Telemetered Seismic Network of Northern China. The mean and standard residuals of hypocenter location acquired by this method are much less than those provided by the report of respective earthquakes. The crustal structure of the first and the second layers obtained interpret the outline of the plain and mountain area in the region successfully and the crustal structure of the third layer nearly coincides with the Moho discontinuity obtained by artificial seismic sounding. These show the genetic algorithm is effective to the inversion of hypocenter location and three dimensional velocity structure.展开更多
文摘Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.
文摘The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda array; while the ratio factor of spacing to length as well as the ratio of length to diameter of the elements are optimized for LPDA array. The results show that the main parameters, such as gain and pattern, have been improved apparently; and the high back lobe level of LPDA can be reduced greatly, therefore, GA is a very competent method for optimizing the linear array as well as in other fields.
文摘Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61105086)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS-2010-MS-12)Hubei Province Natural Science Foundation(Grant No.2010CDB0 3405)
文摘The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that,a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective.Compared with no optimization,the overall system dynamic response speed is significantly improved.
基金Supported by the National Natural Science Foundation of China (No.60421002)the National High Technology Research and Development Program of China (863 Program,2006AA040308).
文摘A splicing system based genetic algorithm is proposed to optimize dynamical radial basis function(RBF)neural network,which is used to extract valuable process information from input output data.The novel RBF net-work training technique includes the network structure into the set of function centers by compromising between the conflicting requirements of reducing prediction error and simultaneously decreasing model complexity.The ef-fectiveness of the proposed method is illustrated through the development of dynamic models as a benchmark discrete example and a continuous stirred tank reactor by comparing with several different RBF network training methods.
基金State Natural Science Foundation (49874021).Contribution No. 01FE2002, Institute of Geophysics, China Seismological Bureau.
文摘Smooth constraint is important in linear inversion, but it is difficult to apply directly to model parameters in genetic algorithms. If the model parameters are smoothed in iteration, the diversity of models will be greatly suppressed and all the models in population will tend to equal in a few iterations, so the optimal solution meeting requirement can not be obtained. In this paper, an indirect smooth constraint technique is introduced to genetic inversion. In this method, the new models produced in iteration are smoothed, then used as theoretical models in calculation of misfit function, but in process of iteration only the original models are used in order to keep the diversity of models. The technique is effective in inversion of surface wave and receiver function. Using this technique, we invert the phase velocity of Raleigh wave in the Tibetan Plateau, revealing the horizontal variation of S wave velocity structure near the center of the Tibetan Plateau. The results show that the S wave velocity in the north is relatively lower than that in the south. For most paths there is a lower velocity zone with 12-25 km thick at the depth of 15-40 km. The lower velocity zone in upper mantle is located below the depth of 100 km, and the thickness is usually 40-80 km, but for a few paths reach to 100 km thick. Among the area of Ando, Maqi and Ushu stations, there is an obvious lower velocity zone with the lowest velocity of 4.2-4.3 km/s at the depth of 90-230 km. Based on the S wave velocity structures of different paths and former data, we infer that the subduction of the Indian Plate is delimited nearby the Yarlung Zangbo suture zone.
基金This work was financially supported by the National Science Foundation of China
文摘In this paper the simple generation algorithms are improved. According to the geometric meaning of the structural reliability index, a method is proposed to deal with the variables in the standard normal space. With consideration of variable distribution, the correlation coefficient of the variables and its fuzzy reliability index, the feasibility and the reliability of the algorithms are proved with an example of structural reliability analysis and optimization.
基金Sponsored by the Major State Basic Research Development Progrma of China(Grant No. 2007CB210104)
文摘This paper presents an aerodynamic design of a small transonic fan by 3D viscous RNS solver combined with genetic algorithms.The aerodynamic design system based on the 3D viscous RNS solver reduces the dependency on the design experience for designers.Furthermore the optimum with genetic algorithms is an effective method for improving the transonic fan performance as a part of the design system.The design result showed that the transonic fan designed by this method reaches the design requirement even with more efficiency value.
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50608022)
文摘A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization variables,which are decision factors of shapes of membrane structures.Three objectives are proposed including maximization of stiffness,maximum uniformity of stress and minimum reaction under external loads.Pareto Multi-objective Genetic Algorithm is introduced to solve the Pareto solutions.Consequently,the dependence of the optimality upon the optimization variables is derived to provide guidelines on how to determine design parameters.Moreover,several examples illustrate the proposed methods and applications.The study shows that the multi-objective optimization method in this paper is feasible and efficient for membrane structures;the research on Pareto solutions can provide explicit and useful guidelines for shape design of membrane structures.
文摘In this article, The genetic algorithm method was proposed, that is, to establish the box structure's nonlinear three-dimension optimization numerical model based on thermo-mechanical coupling algorithm, and the objective function of welding distortion has been utilized to determine an optimum welding sequence by optimization simulation. The validity of genetic algorithm method combining with the thermo-mechanical nonlinear finite element model is verified by comparison with the experimental data where available. By choosing the appropriate objective function for the considered case, an optimum weldiing.sequence is determined by a genetic algorithm. All done in this study indicates that the new method presented in this article will have important practical application for designing the welding technical parameters in the future.
文摘The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected.
文摘In this paper, we report in-depth analysis and research on the optimizing computer network structure based on genetic algorithm and modified convex optimization theory. Machine learning method has been widely used in the background and one of its core problems is to solve the optimization problem. Unlike traditional batch algorithm, stochastic gradient descent algorithm in each iteration calculation, the optimization of a single sample point only losses could greatly reduce the memory overhead. The experiment illustrates the feasibility of our proposed approach.
基金supported by National Natural Science Foundation of China(No.1110216/A020312)Foundation Sciences of Northwestern Polytechnical University(No.JC20120210)
文摘In order to decrease the number of design variables and improve the efficiency of com- posite structure optimal design, a single-level composite structure optimization method based on a tapered model is presented. Compared with the conventional multi-level composite structure opti- mization method, this single-level method has many advantages. First, by using a distance variable and a ply group variable, the number of design variables is decreased evidently and independent with the density of sub-regions, which makes the single-level method very suitable for large-scale composite structures. Second, it is very convenient to optimize laminate thickness and stacking sequence in the same level, which probably improves the quality of optimal result. Third, ply con-tinuity can be guaranteed between sub-regions in the single-level method, which could reduce stress concentration and manufacturing difficulty. An example of a composite wing is used to demonstrate the advantages and competence of the single-level method proposed.
文摘A novel genetic algorithm (NGA) is proposed, which possesses micro-regulation and renascence operation. The optimized variable searching interval is regulated gradually according to the sub-group of excellent individuals. The NGA is used to optimize the parameters of the variable structure control (VSC), which satisfies the new reaching law and sliding mode. It is used in robot control systems. Simulation results are given.
文摘The paper proposes an evolutionary computational model, multiple structure computational model,from simulaing the behavior of the ecosystem. Some numerical experiments shoal the new model can solve some GA-hard problems. Using the concept of adaility in abaptability' in ecology, we give a theoretical analysis to explain why the new model is efficient.
基金Project supported by the Innovation Fund of Space Technology.
文摘In this paper, adaptive genetic algorithm (AGA) is applied to topology optimization of truss structure with frequency domain excitations. The optimization constraints include fundamental frequency, displacement responses under force excitations and acceleration responses under foundation acceleration excitations. The roulette wheel selection operator, adaptive crossover and mutation operators are used as genetic operators. Some heuristic strategies are put forward to direct the deletion of the extra bars and nodes on truss structures. Three examples demonstrate that the proposed method can yield the optimum structure form and the lightest weight of the given ground structure while satisfying dynamic response constraints.
基金Supported by the National Natural Science Foundation of China(50378041)the Program for New Century Excellent Talents of Ministry of Educationof China (2004)
文摘The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structural health condition monitoring. In this paper, a three-dimensional finite-element model is established for a highway bridge over a railway on No.312 National Highway and the ambient test is carried out in site, the dynamic characteristics of the bridge are studied using the finite-element analysis and ambient vibration measurements. Comparison between the theoretical and experimental results shows that the frequency differences of the modes range between 0.44% and 8.77%. If the measurement is more reliable, the finite element model updating is necessary. Thus, a set of design variables is selected based on sensitivity analysis, then the finite element model of the bridge is updated based on optimization algorithm. The results of model updating show that the proposed updating method in this paper is more simple and effective, the updated finite element model can reflect the dynamic characteristics of the bridge better, the analytical results can provide the theoretical basis for damage identification and health condition monitoring of the bridge.
基金Foundation item: National Natural Science Foundation of China (10377015)
文摘The pylon structure of an airplane is very complex, and its high-fidelity analysis is quite time-consuming. If posterior preference optimization algorithm is used to solve this problem, the huge time consumption will be unacceptable in engineering practice due to the large amount of evaluation needed for the algorithm. So, a new interactive optimization algorithm-interactive multi-objective particle swarm optimization (IMOPSO) is presented. IMOPSO is efficient, simple and operable. The decision-maker can expediently determine the accurate preference in IMOPSO. IMOPSO is used to perform the pylon structure optimization design of an airplane, and a satisfactory design is achieved after only 12 generations of IMOPSO evolutions. Compared with original design, the maximum displacement of the satisfactory design is reduced, and the mass of the satisfactory design is decreased for 22%.
文摘This paper discusses the inversion of velocity structure and hypocenters location in the Beijing Tianjin Tangshan Zhangjiakou area by genetic algorithm. The hypocenters location of selected earthquakes and crustal structure of this area are obtained using the travel time data of local earthquakes acquired by the Telemetered Seismic Network of Northern China. The mean and standard residuals of hypocenter location acquired by this method are much less than those provided by the report of respective earthquakes. The crustal structure of the first and the second layers obtained interpret the outline of the plain and mountain area in the region successfully and the crustal structure of the third layer nearly coincides with the Moho discontinuity obtained by artificial seismic sounding. These show the genetic algorithm is effective to the inversion of hypocenter location and three dimensional velocity structure.