期刊文献+
共找到346篇文章
< 1 2 18 >
每页显示 20 50 100
Estimation of Open Channel Flow Parameters by Using Genetic Algorithm
1
作者 Ebissa Gadissa Asirat Teshome 《Open Journal of Optimization》 2018年第3期51-64,共14页
The present study involves estimation of open channel flow parameters having different bed materials invoking data of Gradual Varied Flow (GVF). Use of GVF data facilitates estimation of flow parameters. The necessary... The present study involves estimation of open channel flow parameters having different bed materials invoking data of Gradual Varied Flow (GVF). Use of GVF data facilitates estimation of flow parameters. The necessary data base was generated by conducting laboratory. In the present study, the efficacy of the Genetic Algorithm (GA) optimization technique is assessed in estimation of open channel flow parameters from the collected experimental data. Computer codes are developed to obtain optimal flow parameters Optimization Technique. Applicability, adequacy and robustness of the developed code are tested using sets of theoretical data generated by experimental work. A simulation model was developed to compute GVF depths at preselected discrete sections for given downstream head and discharge rate. This model is linked to an optimizer to estimate optimal value of decision variables. The proposed model is employed to a set of laboratory data for three bed materials. Application of proposed model reveals that optimal value of fitting parameter ranges from 1.42 to 1.48 as the material gets finer and optimal decision variable ranges from 0.015 to 0.024. The optimal estimates of Manning’s n of three different bed conditions of experimental channel appear to be higher than the corresponding reported/Strickler’s estimates. 展开更多
关键词 parameter estimation genetic Algorithm Optimal VALUES GVF Profiles
下载PDF
ALGORITHM FOR THE DETECTION AND PARAMETER ESTIMATION OF MULTICOMPONENT LFM SIGNALS 被引量:7
2
作者 YuanWeiming WangMin WuShunjun 《Journal of Electronics(China)》 2005年第2期185-189,共5页
A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. T... A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. The key problem lies in the chirplet estimation. Genetic algorithm is employed to search for the optimization parameter of chirplet. High estimation accuracy can be obtained even at low Signal-to-Noisc Ratio(SNR). Finally simulation results are provided to demonstrate the performance of the proposed algorithm. 展开更多
关键词 Multicomponent Linear Frequency Modulated(LFM) signals parameter estimation Radon-Ambiguity Transform (RAT) Adaptive Signal Decomposition (ASD) genetic algorithm
下载PDF
Inverse procedure for determining model parameter of soils using real-coded genetic algorithm 被引量:3
3
作者 李守巨 邵龙潭 +1 位作者 王吉喆 刘迎曦 《Journal of Central South University》 SCIE EI CAS 2012年第6期1764-1770,共7页
The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of... The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated. 展开更多
关键词 parameter estimation real-coded genetic algorithm tri-dimensional compression test gradient-based optimization
下载PDF
Development and Application of a Modified Genetic Algorithm for Estimating Parameters in GMA Models
4
作者 José A. Hormiga Carlos González-Alcón Néstor V. Torres 《Applied Mathematics》 2014年第16期2447-2457,共11页
In this work we introduce a modified version of the simple genetic algorithm (MGA) and will show the results of its application to two GMA power law models (a general theoretical branched pathway system and a mathemat... In this work we introduce a modified version of the simple genetic algorithm (MGA) and will show the results of its application to two GMA power law models (a general theoretical branched pathway system and a mathematical model of the amplification and responsiveness of the JAK2/STAT5 pathway representing an actual, experimentally studied system). The two case studies serve to illustrate the utility and potentialities of the MGA method for concerning parameter estimation in complex models of biological significance. The analysis of the results obtained from the application of the MGA algorithm allows an evaluation of the potentialities and shortcomings of the proposed algorithm when compared with other parameter estimation algorithm such as the simple genetic algorithm (SGA) and the simulated annealing (SA). MGA shows better performance in both studied cases than SGA and SA, either in the presence or absence of noise. It is suggested that these advantages are due to the fact that the objective function definition in the MGA could include the experimental error as a weight factor, thus minimizing the distance between the data and the predicted value. Actually, MGA is slightly slower that the SGA and the SA, but this limitation is compensated by its greater efficiency in finding objective values closer to the global optimum. Finally, MGA can lead to an early local optimum, but this shortcoming may be prevented by providing a great population diversity through the insertion of different selection processes. 展开更多
关键词 parameter estimation genetic algorithms GMA MODELS MODEL Calibration INVERSION Methods JAK2/STAT5 PATHWAY MODEL
下载PDF
Nonlinear Backstepping Ship Course Controller 被引量:7
5
作者 Anna Witkowska Roman Smierzchalski Gdansk 《International Journal of Automation and computing》 EI 2009年第3期277-284,共8页
A ship, as an object of course control, is characterized by a nonlinear function describing the static maneuvering characteristics. The backstepping method is one of the methods that can be used during the designing p... A ship, as an object of course control, is characterized by a nonlinear function describing the static maneuvering characteristics. The backstepping method is one of the methods that can be used during the designing process of a nonlinear course controller for ships. The method has been used for the purpose of designing two configurations of nonlinear controllers, which were then used to control the ship course. One of the configurations took dynamic characteristic of a steering gear into account during the designing stage. The parameters of the obtained nonlinear control structures have been tuned to optimise the operation of the control system. The optimisation process has been performed by means of genetic algorithms. The quality of operation of the designed control algorithms has been checked in simulation tests performed on the mathematical model of a tanker. The results of simulation experiments have been compared with the performance of the system containing a conventional proportional-derivative (PD) controller. 展开更多
关键词 Backstepping method genetic algorithm marine ships control nonlinear control tuning parameters.
下载PDF
Genetic programming-based chaotic time series modeling 被引量:1
6
作者 张伟 吴智铭 杨根科 《Journal of Zhejiang University Science》 EI CSCD 2004年第11期1432-1439,共8页
This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) ... This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling. 展开更多
关键词 Chaotic time series analysis genetic programming modeling nonlinear parameter estimation (NPE) Particle Swarm Optimization (PSO) nonlinear system identification
下载PDF
NONLINEAR FILTERING ALGORITHM FOR IN S INITIAL ALIGNMENT
7
作者 王丹力 张洪钺 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1999年第4期246-250,共5页
The initial alignment error equation of an INS (Inertial Navigation System) with large initial azimuth error has been derived and nonlinear characteristics are included. When azimuth error is fairly small, the nonline... The initial alignment error equation of an INS (Inertial Navigation System) with large initial azimuth error has been derived and nonlinear characteristics are included. When azimuth error is fairly small, the nonlinear equation can be reduced to a linear one. Extended Kalman filter, iterated filter and second order filter formulas are derived for the nonlinear state equation with linear measurement equation. Simulations results show that the accuracy of azimuth error estimation using extended Kalman filter is better than that of using standard Kalman filter while the iterated filter and second order filter can give even better estimation accuracy. 展开更多
关键词 algorithms Error analysis Inertial navigation systems Iterative methods nonlinear equations nonlinear filtering parameter estimation
下载PDF
移栽机取苗机构设计及参数优化
8
作者 鲁丁 王卫兵 韩帅 《机械设计与制造》 北大核心 2024年第5期290-295,共6页
为了解决现有取苗装置结构复杂、基质损失率高等问题,设计了一种由电机驱动的夹钵式取苗装置。利用解析法建立了对应数学模型,确定了取苗装置的机构的参数。为保证机构的取苗效果,采用非线性规划遗传算法进行优化设计。其中遗传算法采... 为了解决现有取苗装置结构复杂、基质损失率高等问题,设计了一种由电机驱动的夹钵式取苗装置。利用解析法建立了对应数学模型,确定了取苗装置的机构的参数。为保证机构的取苗效果,采用非线性规划遗传算法进行优化设计。其中遗传算法采用实数编码,应用轮盘赌的抽样方法,通过选择、交叉后,利用新个体的值作为非线性规划的初始值寻优,最后利用优化参数建立三维模型,并利用ADAMS软件进行仿真验证设计结果。仿真结果表明,苗爪开合间距准确,在取苗过程中速度曲线平滑,工作平稳,振动较小,苗爪在x和y方向的最大加速度分别为178.658mm/s^(2)和137.208mm/s^(2),小于45m/s^(2),满足作业要求。取苗实验表明:当取苗频率为50株/分钟时,取苗率为92.18%,损伤率为3.12%,夹苗、持苗动作稳定,满足移栽作业要求。 展开更多
关键词 移栽机 参数优化 遗传算法 非线性规划
下载PDF
Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm 被引量:17
9
作者 Hong-li QI Hui ZHAO +1 位作者 Wei-wen LIU Hai-bo ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第8期1205-1212,共8页
A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The pa... A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS. 展开更多
关键词 Grating eddy current displacement sensor (GECDS) Artificial neural network (ANN) genetic algorithm (GA) parameters optimization nonlinearity error
原文传递
Parameter Control of Genetic Algorithms by Learning and Simulation of Bayesian Networks——A Case Study for the Optimal Ordering of Tables 被引量:2
10
作者 Concha Bielza Juan A. Fernndez del Pozo Pedro Larranaga 《Journal of Computer Science & Technology》 SCIE EI CSCD 2013年第4期720-731,共12页
Parameter setting for evolutionary algorithms is still an important issue in evolutionary computation. There are two main approaches to parameter setting: parameter tuning and parameter control. In this paper, we int... Parameter setting for evolutionary algorithms is still an important issue in evolutionary computation. There are two main approaches to parameter setting: parameter tuning and parameter control. In this paper, we introduce self-adaptive parameter control of a genetic algorithm based on Bayesian network learning and simulation. The nodes of this Bayesian network are genetic algorithm parameters to be controlled. Its structure captures probabilistie conditional (in)dependence relationships between the parameters. They are learned from the best individuals, i.e., the best configurations of the genetic algorithm. Individuals are evaluated by running the genetic algorithm for the respective parameter configuration. Since all these runs are time-consuming tasks, each genetic algorithm uses a small-sized population and is stopped before convergence. In this way promising individuals should not be lost. Experiments with an optimal search problem for simultaneous row and column orderings yield the same optima as state-of-the-art methods but with a sharp reduction in computational time. Moreover, our approach can cope with as yet unsolved high-dimensional problems. 展开更多
关键词 genetic algorithm estimation of distribution algorithm parameter control parameter setting Bayesian network
原文传递
基于GA-BP网络的数控机床动态误差预测研究
11
作者 李帅杰 陈光胜 《机电工程》 CAS 北大核心 2024年第10期1747-1758,共12页
动态误差是高速高精度数控机床的重要误差源,针对实际加工过程中动态误差对工件精度影响较大的问题,提出了一种基于遗传算法优化的反向传播(GA-BP)神经网络以预测动态误差。首先,为了提高神经网络对动态误差的预测精度,从线性特征与非... 动态误差是高速高精度数控机床的重要误差源,针对实际加工过程中动态误差对工件精度影响较大的问题,提出了一种基于遗传算法优化的反向传播(GA-BP)神经网络以预测动态误差。首先,为了提高神经网络对动态误差的预测精度,从线性特征与非线性特征两方面对动态误差影响因素进行了深入分析,确定了神经网络输入输出参数;然后,采用了遗传算法对BP神经网络进行了优化,建立了动态误差模型,获得了最优网络学习参数,从而实现了对动态跟随误差的精准预测;之后,采用三次样条插值的方法对理想轨迹与实际轨迹之间的轮廓误差进行了计算,有效提高了轮廓误差估算精度;最后,采用了五轴数控机床进行了实验,对模型的有效性进行了验证。研究结果表明:所建神经网络模型可以精准预测机床反向越冲特性对轮廓误差的影响,各轴的动态误差预测精度为±3μm,复杂轨迹轮廓误差预测精度为±1.5μm。实验结果验证了所建模型的可靠性,为后续机床动态误差建模与控制研究提供了一定的参考价值。 展开更多
关键词 高速高精度数控机床 动态误差 非线性特征 遗传算法优化的反向传播神经网络 轮廓误差估算
下载PDF
二阶Radon-Fourier变换与遗传算法结合的快速相参积累算法
12
作者 范培毅 郭一帆 +2 位作者 景海涛 原浩娟 冀文辉 《电讯技术》 北大核心 2024年第11期1858-1865,共8页
针对匀加速运动的高速目标,可以用二阶Radon-Fourier变换(Second-order Radon-Fourier Transform,SRFT)完成对回波信号的相参积累。SRFT算法的原理是通过“速度-加速度”联合搜索来实现目标的运动参数估计,其计算量较大,不满足实时检测... 针对匀加速运动的高速目标,可以用二阶Radon-Fourier变换(Second-order Radon-Fourier Transform,SRFT)完成对回波信号的相参积累。SRFT算法的原理是通过“速度-加速度”联合搜索来实现目标的运动参数估计,其计算量较大,不满足实时检测的需求。针对这个问题,提出一种基于遗传算法(Genetic Algorithm,GA)的快速实现方法。首先对运动参数集进行编码,设置初始群体;然后通过遗传算法对群体更新迭代,使其能够自发快速地逼近全局最优解,减少不必要的搜索路径;最终快速实现待检测目标的相参积累。仿真结果表明,在保证检测性能的前提下,算法计算量得到有效改善,运算次数减少大约一个量级。 展开更多
关键词 目标检测 二阶Radon-Fourier变换 相参积累 参数估计 遗传算法
下载PDF
基于遗传算法的汽车底盘件疲劳寿命威布尔分布参数估计
13
作者 张学萍 王娜 《浙江水利水电学院学报》 2024年第2期77-80,90,共5页
为进一步探讨威布尔分布在汽车产品机械构件可靠性寿命评估过程中的应用情况,进行了基于遗传算法原理、威布尔分布参数确定方法和威布尔分布参数估计的研究。利用三参数威布尔分布参数估计遗传算法模型,得出基准舒适寿命的不可靠度,继... 为进一步探讨威布尔分布在汽车产品机械构件可靠性寿命评估过程中的应用情况,进行了基于遗传算法原理、威布尔分布参数确定方法和威布尔分布参数估计的研究。利用三参数威布尔分布参数估计遗传算法模型,得出基准舒适寿命的不可靠度,继而确定汽车底盘件疲劳寿命的威布尔分布三参数。研究表明,遗传算法应用于汽车底盘件疲劳寿命威布尔分布参数估计过程中,实用性较为明显,对汽车产品参数估计较为直接且简单有效。 展开更多
关键词 遗传算法 汽车底盘件 疲劳寿命 威布尔分布 参数估计
下载PDF
A Novel Nonlinear Parameter Estimation Method of Soft Tissues
14
作者 Qianqian Tong Zhiyong Yuan +3 位作者 Mianlun Zheng Xiangyun Liao Weixu Zhu Guian Zhang 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2017年第6期371-380,共10页
The elastic parameters of soft tissues are important for medical diagnosis and virtual surgery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft tissues. Firstly, an in-house... The elastic parameters of soft tissues are important for medical diagnosis and virtual surgery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft tissues. Firstly, an in-house data acquisition platform was used to obtain external forces and their corresponding deformation values, To provide highly precise data for estimating nonlinear param- eters, the measured forces were corrected using the constructed weighted combination forecasting model based on a support vector machine (WCFM_SVM). Secondly, a tetrahedral finite element parameter estimation model was established to describe the physical characteristics of soft tissues, using the substitution parameters of Young's modulus and Poisson's ratio to avoid solving compli- cated nonlinear problems. To improve the robustness of our model and avoid poor local minima, the initial parameters solved by a linear finite element model were introduced into the parameter estimation model. Finally, a self-adapting Levenberg-Marquardt (LM) algorithm was presented, which is capable of adaptively adjusting iterative parameters to solve the established parameter estimation model. The maximum absolute error of our WCFM SVM model was less than 0.03 Newton, resulting in more accurate forces in comparison with other correction models tested. The maximum absolute error between the calculated and measured nodal displacements was less than 1.5 mm, demonstrating that our nonlinear parameters are precise. 展开更多
关键词 nonlinear parameter estimation Finite element method Substitution parameters Force correction Self-adapting Levenberg-Marquardt algorithm
原文传递
差异演化的实验研究 被引量:70
15
作者 谢晓锋 张文俊 +1 位作者 张国瑞 杨之廉 《控制与决策》 EI CSCD 北大核心 2004年第1期49-52,56,共5页
首先基于一些实例研究了差异演化(DE)的参数选择问题;然后在分析DE特点的基础上,将缩放因子F由固定数值设为随机函数,实现了一个简化的DE版本(SDE).该方法不仅减少了需调整的参数,而且对CR的参数选择更为宽松.与已有文献中遗传算法的带... 首先基于一些实例研究了差异演化(DE)的参数选择问题;然后在分析DE特点的基础上,将缩放因子F由固定数值设为随机函数,实现了一个简化的DE版本(SDE).该方法不仅减少了需调整的参数,而且对CR的参数选择更为宽松.与已有文献中遗传算法的带约束型数值优化问题的实验结果对比,表明SDE能在较少的计算次数内获得较好的结果. 展开更多
关键词 差异演化 演化计算 数值优化 计算机算法 参数设置
下载PDF
应用混合遗传算法的超磁致伸缩致动器磁滞模型的参数辨识 被引量:21
16
作者 曹淑瑛 王博文 +2 位作者 郑加驹 闫荣格 黄文美 《中国电机工程学报》 EI CSCD 北大核心 2004年第10期127-132,共6页
针对遗传算法爬山能力差的弱点,该文把信赖域算法作为一个与选择、交叉和变异平行的算子,嵌入到遗传算法中,得到一种混合计算智能算法。该方法兼顾了遗传算法和信赖域算法的长处,既有较快的收敛速度,又能以非常大的概率求得最优解。应... 针对遗传算法爬山能力差的弱点,该文把信赖域算法作为一个与选择、交叉和变异平行的算子,嵌入到遗传算法中,得到一种混合计算智能算法。该方法兼顾了遗传算法和信赖域算法的长处,既有较快的收敛速度,又能以非常大的概率求得最优解。应用该混合遗传算法对超磁致伸缩致动器的磁滞非线性动态模型进行参数辨识,仿真和实验研究表明,该算法能有效地辨识非线性系统的非线性参数,并具有一定的抗噪声能力。 展开更多
关键词 信赖域算法 混合遗传算法 最优解 算子 收敛速度 嵌入 参数辨识 计算智能 非线性系统 抗噪声能力
下载PDF
基于优进策略的遗传算法对重油热解模型参数的估计 被引量:38
17
作者 宋晓峰 陈德钊 +2 位作者 胡上序 肖家治 刘福洲 《高校化学工程学报》 EI CAS CSCD 北大核心 2003年第4期411-417,共7页
针对常规遗传算法全局寻优效率偏低的弱点,提出了一种优进策略,用以改进常规遗传算法。该策略将从繁衍过程中获取进化信息,自适应地改进子代分布,适时引入确定性操作,以提高全局寻优性能。提出的相关技术包括维持种群的多样性、改进交... 针对常规遗传算法全局寻优效率偏低的弱点,提出了一种优进策略,用以改进常规遗传算法。该策略将从繁衍过程中获取进化信息,自适应地改进子代分布,适时引入确定性操作,以提高全局寻优性能。提出的相关技术包括维持种群的多样性、改进交叉算子、增加Powell寻优算子等。实例测试表明这种优进策略效果良好,并已成功地应用于重油热解三集总动力学复杂数学模型的非线性参数估计。 展开更多
关键词 优进策略 遗传算法 重油热解 非线性参数估计
下载PDF
基于遗传算法的最大似然参数优化估计 被引量:21
18
作者 毛昭勇 宋保维 +1 位作者 李正 胡海豹 《机械强度》 EI CAS CSCD 北大核心 2006年第1期79-82,共4页
用最大似然法进行参数优化估计时,为了避免常规优化算法由于受迭代初值的影响不易收敛到全局最优解的缺点,文中采用遗传算法,不再需要估计优化变量的初始值即可获得全局近似最优解。建立以似然函数为目标,求其极大值点即可确定参数最优... 用最大似然法进行参数优化估计时,为了避免常规优化算法由于受迭代初值的影响不易收敛到全局最优解的缺点,文中采用遗传算法,不再需要估计优化变量的初始值即可获得全局近似最优解。建立以似然函数为目标,求其极大值点即可确定参数最优解的优化模型。为了更好地确保遗传算法获得全局最优解,在传统遗传算法的基础上采用尺度变换适应度函数、并行操作、保留最优个体等方法,进一步保证方程解的精度。最后以威布尔分布为例进行参数估计,结果表明,改进的遗传算法可以在求解效率和收敛性能上达到较好的平衡,能更好地将优化方法与最大似然估计法相结合。 展开更多
关键词 参数估计 最大似然法 遗传算法 优化
下载PDF
复合粒子群优化算法在模型参数估计中的应用 被引量:19
19
作者 俞欢军 张丽平 +2 位作者 陈德钊 宋晓峰 胡上序 《高校化学工程学报》 EI CAS CSCD 北大核心 2005年第5期675-680,共6页
化工非线性模型的参数估计是较为困难的寻优问题,经典方法常会陷入局部极值。粒子群算法操作简便、容易实现且全局搜索功能较强,适用于非线性参数估计。但其参数值的确定与问题相关,若设定不当,会严重影响全局搜索的性能。今提出引入遗... 化工非线性模型的参数估计是较为困难的寻优问题,经典方法常会陷入局部极值。粒子群算法操作简便、容易实现且全局搜索功能较强,适用于非线性参数估计。但其参数值的确定与问题相关,若设定不当,会严重影响全局搜索的性能。今提出引入遗传算法,在粒子群算法的搜索过程中,逐代优选参数,包括惯性权值,加速常数,以此构建为复合粒子群优化算法。分析与测试表明,其全局搜索性能有显著改善。进一步的工作又将两种粒子群算法成功地应用于重油热解模型的参数估计。采用复合粒子群优化算法估计参数构建的重油热解模型,其预报相对误差比常规粒子群优化算法降低了8.97%,比简单遗传算法降低了23.21%,效果明显。 展开更多
关键词 复合 粒子群 优化算法 非线性模型 参数估计
下载PDF
用改进的实数编码遗传算法估计反应动力学参数 被引量:27
20
作者 黄晓峰 潘立登 +1 位作者 陈标华 李成岳 《高校化学工程学报》 EI CAS CSCD 北大核心 1999年第1期50-55,共6页
通过理论分析和模拟实验研究了遗传算法中实数编码线性交叉操作的效率,提出了一种优化分布线性交叉操作策略,使子代个体在搜索空间内达到均匀分布,具有很高的搜索效率。用这种改进的实数编码遗传算法进行正丁烷选择氧化反应动力学参... 通过理论分析和模拟实验研究了遗传算法中实数编码线性交叉操作的效率,提出了一种优化分布线性交叉操作策略,使子代个体在搜索空间内达到均匀分布,具有很高的搜索效率。用这种改进的实数编码遗传算法进行正丁烷选择氧化反应动力学参数估计,取得了良好的效果。 展开更多
关键词 遗传算法 实数编码 参数 正丁烷 顺酐 动力学
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部